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Ring and module structures on K-theory of leaf spaces and their
application to longitudinal index theory

Christopher Wulff

Abstract

Pursuing conjectures of John Roe, we use the stable Higson corona of foliated cones to construct
a new K-theory model for the leaf space of a foliation. This new K-theory model is – in contrast
to Alain Connes’ K-theory model – a ring. We show that Connes’ K-theory model is a module
over this ring and develop an interpretation of the module multiplication in terms of indices of
twisted longitudinally elliptic operators.

1. Introduction

Let (M,F) be a foliation on a compact manifold M . Roe suggested in [Roe95] to use
the coarse geometry of the foliated cone O(M,F) (ibid.) to construct a new K-theory model
K∗
FJ(M/F) for the leaf space. The index FJ stands for Farrell-Jones, as this construction was

motivated by the foliated control theory of [FJ90].
However, it is virtually impossible to work with Roe’s definition, because it involves using K-

homology of the Roe-algebra. The Roe-algebra is non-separable and non-nuclear and therefore
the usual tools for calculating K-homology fail, not to mention the fact that it is not even clear
how to define K-homology in this case correctly.
The purpose of the present paper is to present a slight modification of Roe’s K-theory model

which is well behaved and for which all conjectures from [Roe95] are true. It is based on the
idea of [EM06] that one should use the K-theory of the stable Higson corona c(X) of a coarse
spaceX as a replacement for theK-homology of the Roe algebra. With this in mind we propose
the following alternative definition:

Definition 4.1†. The “Farrell-Jones” model for theK-theory of the leaf space of a foliation
(M,F) is K∗

FJ(M/F) := K−∗(c(O(M,F))).

Roe conjectured that the Farrell-Jones K-theory groups K∗
FJ(M/F) are in fact rings.

Using our modified definition, the ring structure is canonical and was introduced in [Wul14,
Definition 6.1].
One might expect further basic properties ofK-theory of “spaces”, and indeed the new model

satisfies the following: The rings K∗
FJ(M/F) are contravariantly functorial under smooth maps

of leaf spaces (cf. Theorem 4.3) and if (M,F) comes from a fibre bundleM → B with connected
fibre, then there is a canonical ring isomorphism K∗

FJ(M/F) ∼= K∗(B) (Example 4.5).
Usually, one considers the K-theory of Connes’ foliation algebra,

K∗
C(M/F) := K−∗(C

∗
r (M,F)),
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as the K-theory of the leaf space [Con82, Sections 5,6]. We use the reduced foliation
algebra C∗

r (M,F), because our proofs of the main theorems don’t work for the full foliation
algebra C∗(M,F). These groups are the right receptacles of indices of longitudinally elliptic
operators (see [Con82, Section 7] and Section 10) and there is a wrong way functoriality
f! : K

∗
C(M1/F1) → K∗

C(M2/F2) under K-oriented smooth maps of leaf spaces f :M1/F1 →
M2/F2 [HS87].
Roe asked in [Roe95] for the relation between Connes’ K-theory model and the new Farrell-

Jones K-theory model. With our modified definition of the latter, Roe’s conjectures work out
fine:

Corollary 9.6† (cf. [Roe95, Conjecture 0.2]). K∗
C(M/F) is a module over K∗

FJ(M/F).

Corollary 11.4 (cf. [Roe95, p. 204]). Assume that TF is even dimensional and spinc

and let /D be the corresponding Dirac operator. Then the map

p! ◦ p∗ : K∗
FJ(M/F) → K∗

C(M/F)

is module multiplication with ind( /D) ∈ K0
C(M/F).

Here, p : M →M/F is the canonical smooth map of leaf spaces, its domain being M/F0 for
the trivial 0-dimensional foliation F0 on M (cf. Example 3.10).
Proving the same result for odd dimensional spinc foliations would require the index theory

of selfadjoint longitudinally elliptic operators and its relation to the module structure, which
are not discussed in this paper.
The module structure can also be interpretated by indices of twisted longitudinally elliptic

operators. If D is a longitudinally elliptic operator on (M,F) and F →M a smooth vector
bundle, then the twisted operator DF again is longitudinally elliptic. There is no general
method to calculate ind(DF ) from ind(D) and F alone, because there are cases where ind(D)
vanishes but ind(DF ) does not. It is possible, however, if the bundle F is a bundle over the
leaf space in an asymptotic sense, as defined in Definition 5.5. This condition ensures that
[F ] ∈ K0(M) is the pullback of an element xF ∈ K0

FJ(M/F).

Corollary 11.3. If D is a longitudinally elliptic operator, F →M a smooth vector bundle
for which there is an element xF ∈ K0

FJ(M/F) with [F ] = p∗(xF ), then the index of the twisted
operator DF is

ind(DF ) = xF · ind(D) ∈ K0
C(M/F).

An illustrative special case is provided by fibre bundles p :M → B with connected fibre:
Here, a longitudinally elliptic differential operator D is a family of operators parametrized
by B and the pullback F = p∗F ′ of a vector bundle F ′ over B is asymptotically a bundle
over the leaf space. Under the canonical isomorphism K∗

C(M/F) ∼= K∗(B) [Con82, Section
5], the indices ind(D), ind(DF ) correspond to the family indices of D,DF , and under the
isomorphism K∗

FJ(M/F) ∼= K∗(B) mentioned above, xF corresponds to [F ′] ∈ K0(B). In this
case, the corollary specializes to the rather obvious statement

ind(DF ) = [F ′] · ind(D) ∈ K0(B) .

Finally, it should be said that Section 3 of this paper contains the proof of functoriality of
the foliated cones construction, which is simultaneously a topic of autonomous interest:

†Ditto: See Section 9 for the complete Corollary 9.6.
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Theorem 3.3. The foliated cone construction is a functor from the category of foliations
and smooth maps of leaf spaces between them to the category of metrizable coarse spaces and
coarse equivalence classes of coarse Borel maps between them.

For the readers convenience we note that the full power of functoriality is not needed
for understanding the main results of this paper. Only the special cases of Examples 3.10,
3.11, where the induced maps have a very simple description, are relevant later on. Thus, the
impatient reader may simply skip the first part of Section 3.
One last comment: in this paper we shall use the symbol ⊗ for the maximal tensor product

of C∗-algebras.

Acknowledgements. This paper arises from the author’s doctoral thesis at the Uni-
versity of Augsburg. The author would like to thank his thesis advisor Bernhard Hanke for
his steady encouragement and advice. Furthermore, the author is grateful to Thomas Schick
and the anonymous referee for helpful comments. Part of this work was carried out during
a research stay at the Max Planck Institute for Mathematics in Bonn, whose hospitality is
gratefully acknowledged. The doctoral project was supported by a grant of the Studienstiftung
des Deutschen Volkes.

Contents

1. Introduction . . . . . . . . . . . . . . . . 1
2. Basic definitions . . . . . . . . . . . . . . . 3
3. Functoriality of the foliated cone construction . . . . . . . . 7
4. The new K-theory model . . . . . . . . . . . . . 11
5. Nontrivial examples . . . . . . . . . . . . . . 13
6. Connes’ foliation algebra . . . . . . . . . . . . . 17
7. Hilbert modules associated to vector bundles . . . . . . . . 18
8. The asymptotic category and E-theory . . . . . . . . . 20
9. The module structure . . . . . . . . . . . . . . 25
10. Longitudinal index theory . . . . . . . . . . . . . 30
11. Twisted operators and the module structure . . . . . . . . 32
References . . . . . . . . . . . . . . . . . 35

2. Basic definitions

We begin by recalling some basic notions which are relevant throughout this paper. These
are: the foliated cone and the stable Higson corona, which are the ingredients of the new K-
theory model; the holonomy groupoid, which appears in the definition of Connes K-theory
model and in the definition of the notion of smooth maps between leaf spaces. Furthermore,
we introduce the length function, which is the main tool for relating the holonomy groupoid to
coarse geometry of foliated cones, thus providing the link between the two K-theory models.

2.1. Foliated cones

Let (M,F) be a foliation of a compact manifoldM . Choose any Riemannian metric gM onM
(the foliation does not have to be a Riemannian foliation), and let gN be its normal component
with respect to the orthogonal decomposition TM = TF ⊕NF of the tangent bundle into
longitudinal and normal vectors.
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Definition 2.1 (cf. [Roe95]). The foliated cone O(M,F) over (M,F) is the manifold
[0,∞)×M equipped with the Riemannian metric

g := dt2 + gM + t2gN

which blows up only in the transverse direction as the coordinate t ∈ [0,∞) tends to infinity.
For the the trivial 0-dimensional foliation F0 on M we abbreviate OM := O(M,F0).

From a topological point of view one would have to crush {0} ×M to a point to obtain a cone
(which Roe did in his original definition), but as we are only interested in the coarse geometry,
we may neglect this difference. Furthermore, the coarse equivalence class of the foliated cone
is also independent from the chosen metric gM . This is easily seen later on as a byproduct of
our exposition. Note also that OM is coarsely equivalent to the usual Riemannian cone over
M .
The idea behind the foliated cone is that from a coarse geometric perspective one sees the

leaves diverging from each other as t→ ∞ while longitudinal distances stay bounded and thus
become irrelevant. Therefore, coronas of this coarse space may be thought of as models for
the leaf space of a foliation. In the present paper we implement this idea by using the stable
Higson corona:

2.2. The stable Higson corona

The stable Higson corona of a coarse space was introduced in [EM06]. Its definition and
the properties which are relevant to us are also summarized in [Wul14, Sections 1 & 6]. We
briefly recall what is needed:

Definition 2.2 (cf. [EM06, Section 3],[Wul14, Definition 1.4]). Let (X, dX) be a proper
metric space, (Y, dY ) a metric space and D any C∗-algebra.

(i) A Borel map f : X → Y is said to have vanishing variation, if for all R > 0 the function

VarR f : X → [0,∞), x 7→ sup{dY (f(x), f(y)) | dX(x, y) ≤ R}
vanishes at infinity. [EM06, Definition 3.1]

(ii) Let uc(X ;D) be the C∗-algebra of bounded, continuous functions of vanishing variation
X → D. It is called the unstable Higson compactification of X with coefficients D.

(iii) The unstable Higson corona of X with coefficients D is the quotient C∗-algebra
uc(X ;D) := uc(X ;D)/C0(X ;D).

(iv) Denote by K the C∗-algebra of compact operators on a fixed, infinite dimensional,
separable Hilbert space ℓ2, e. g. ℓ2(N) or ℓ2(Z). The stable counterparts of the above
function algebras are obtained by replacing D with D ⊗ K:

c(X ;D) := uc(X ;D ⊗ K),

c(X ;D) := uc(X ;D ⊗ K).

In particular, c(X ;D) is the stable Higson corona of X with coefficients D. [EM06,
Definition 3.2]

(v) If D = C, we usually omit D from notation.

Proposition 2.3 (cf. [EM06, Proposition 3.7], [Wul14, Proposition 1.5]). The assign-
ments X 7→ uc(X,D), X 7→ c(X,D), X 7→ c(X), are contravariant functors from the category
of proper metric spaces and coarse equivalence classes of coarse Borel maps to the category of
C∗-algebras.
The assignments X 7→ uc(X,D), X 7→ c(X,D), X 7→ c(X), are contravariantly functorial

with respect to continuous coarse maps.
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Furthermore, there is the obvious covariant functoriality in the coefficient algebra.

The main theme of [Wul14] is the canonical multiplicative structure on the K-theory of the
corona algebras: By pointwise multiplication of functions we obtain a ∗-homomorphism

∇ : uc(X ;D)⊗ uc(X ;E) → uc(X ;D ⊗ E) .

Definition 2.4 ([Wul14, Definition 6.1]). The product

Ki(uc(X ;D))⊗Kj(uc(X ;E)) → Ki+j(uc(X ;D ⊗ E))

is the composition of the exterior product in K-theory with ∇∗. Replacing D,E by D ⊗ K, E ⊗
K or simply both by K we obtain the products

Ki(c(X ;D))⊗Kj(c(X ;E)) → Ki+j(c(X ;D ⊗ E))

Ki(c(X))⊗Kj(c(X)) → Ki+j(c(X))

for the stable Higson corona. We denote all of them simply by “ · ”.

These products are associative, graded commutative and independent of the choice of the
identification K⊗ K ∼= K which is hidden in the definition. In particular,K∗(c(X)) is canonically
a Z2-graded, graded commutative ring.

2.3. The holonomy groupoid and its length function

The holonomy groupoid (also called the graph) of a foliation (M,F) was introduced in
[Win83]. In this section, we briefly review its definition and relate it to the coarse geometry
of foliated cones via its length function.
As always, let (M,F) be a foliation of a compact manifold M . Let c be a leafwise path (i. e.

c is piecewise smooth and ċ(t) ∈ Tc(t)F for all t) between x0, x1 ∈M . Choose foliation charts

φi : Ui
≈−→ Vi ×Wi ⊂ RdimF × RcodimF

around xi, i = 0, 1. By following paths which stay close to c, we obtain a well defined germ of
local diffeomorphismsW0 →W1 at φ0(x0). This germ is called the holonomy of c (with respect
to the chosen coordinate charts).
Two leafwise paths c1, c2 between x0, x1 are said to have the same holonomy if their holonomy

with respect to some foliation charts around x0, x1 agree. This notion is independent of the
choice of the charts.

Definition 2.5 ([Win83]). The holonomy groupoid (also called graph) G
s

⇒
r
M of (M,F)

is the smooth (possibly non-Hausdorff) groupoid of dimension dimM + dimF consisting of
holonomy classes of leafwise paths together with the obvious source and range maps.

The manifold structure on G is obtained as follows: For a leafwise path c, choose φ0, φ1 as
above. We may assume that the chart domains are small enough such that V0, V1,W0,W1 are
homeomorphic to open balls and W0

∼=W1 is a diffeomorphism representing the holonomy of
c. Then there is an obvious chart from a set of holonomy classes of leafwise paths which stay
close to c onto the open subset V0 ×W0 × V1 ⊂ RdimM+dimF .
For each x ∈M , the sets Gx := s−1({x}), Gx := r−1({x}) are smooth Hausdorff submani-

folds of G of dimension dimF . For arbitrary subsets A,B ⊂M we define

GA := s−1(A), GB := r−1(B), GBA := s−1(A) ∩ r−1(B).
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The tool which relates the holonomy groupoid to coarse geometry is the length function:
Assume that M is equipped with a Riemannian metric gM .

Definition 2.6. The length function of G assigns to each holonomy class the infimum of
the lengths of its representatives:

L : G→ [0,∞), γ 7→ inf
c∈γ

L(c)

Lemma 2.7. The length function is upper semi-continuous.

Proof. Let a > 0. Assume γ ∈ L−1([0, a)) is represented by a piecewise smooth path c of
length L(c) < a. From the construction of the manifold structure on G it is evident that there
is an open neighbourhood U of γ in (some coordinate chart of) G whose elements can be
represented by a family of piecewise smooth paths {cρ}ρ∈U in such a way that U → [0,∞), ρ 7→
L(cρ) is continuous and cγ = c. Thus, U0 := {ρ ∈ U : L(cρ) < a} is an open neighbourhood of
γ. For any ρ ∈ U0 we have L(ρ) ≤ L(cρ) < a, so U0 ⊂ L−1([0, a)).
This shows that L−1([0, a)) ⊂ G is open and therefore L : G→ [0,∞) is upper semi-

continuous.

Corollary 2.8. The length function is bounded on every compact subset of G.

The length function now gives us the following relation between the holonomy groupoid and
the coarse geometry of the foliated cone:

Lemma 2.9. Let K ⊂ G be compact. Then the set

EK := {(t, s(γ), t, r(γ)) ∈ O(M,F)×O(M,F) : t ∈ [0,∞), γ ∈ K}

is contained in

ER := {(x, y) ∈ O(M,F)×O(M,F) : dist(x, y) ≤ R}

for some R > 0.

Proof. Let R be a little bit bigger then the upper bound for L|K given by Corollary 2.8. The
points (t, s(γ)) and (t, r(γ)) in O(M,F) are connected by the path ct : s 7→ (t, c(s)), where c is
a representative of γ of length L(c) < R. As the metric on O(M,F) blows up only in transverse
direction, we have

d
(
(t, s(γ)), (t, r(γ))

)
≤ L(ct) = L(c) < R

and the claim follows.

Corollary 2.10. Let g ∈ uc(O(M,F), D) and denote its restriction to {t} ×M ⊂
O(M,F) by gt ∈ C(M)⊗D. Then the norm of s∗gt − r∗gt ∈ C(G,D) restricted to any
compact set K tends to zero as t goes to infinity.

Proof. This follows directly from the previous Lemma and vanishing variation of g.
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3. Functoriality of the foliated cone construction

This section explains the functoriality of the foliated cone construction. As mentioned in the
introduction, only the examples at the end of this section are necessary for understanding the
rest of this paper.
Several equivalent definitions of the notion of smooth maps between leaf spaces are given in

[HS87, Section I]. In this paper, we prefer to use the following hands-on definition:

Definition 3.1 ([HS87, Section I]). Let (M1,F1), (M2,F2) be two foliations and denote
their graphs by G1, G2. A smooth map f : M1/F1 →M2/F2 between the leaf spaces is given
by

– an open cover {Ωα}α∈I of M1 and
– a collection of smooth maps fαβ : (G1)

Ωα

Ωβ
→ G2

such that

∀γ ∈ (G1)
Ωα

Ωβ
: fβα(γ

−1) = fαβ(γ)
−1

and for all γ1 ∈ (G1)
Ωα1

Ωα2
, γ2 ∈ (G1)

Ωα2

Ωα3
with s(γ1) = r(γ2) we have

s(fα1α2(γ1)) = r(fα2α3(γ2))

and

fα1α2(γ1)fα2α3(γ2) = fα1α3(γ1γ2).

Note that the open cover {Ωα}α∈I is a somewhat unwelcome datum in the definition, as the
notion of a smooth map between leaf spaces should not depend on its choice. For this reason,
we shall identify smooth maps under the following equivalence relation:

Definition 3.2. Two smooth maps f, f ′ : M1/F1 →M2/F2 between leaf spaces which
are given by the sets of data

(
{Ωα}α∈I , {fαβ}(α,β)∈I×I

)
,
(
{Ω′

α}α∈I′ , {f ′
αβ}(α,β)∈I′×I′

)
,

respectively, are defined to be equivalent iff they are obtained by restriction of index sets from
another smooth map f̃ : M1/F1 →M2/F2 which is of the form

(
{Ωα}α∈I∪̇{Ω′

α}α∈I′ , {f̃αβ}(α,β)∈(I∪̇I′)×(I∪̇I′)

)
.

Given a smooth map f : M1/F1 →M2/F2 between leaf spaces as in Definition 3.1, the unit
map u : M1 → G1 restricts to u|α : Ωα → (G1)

Ωα

Ωα
. The second property shows that the image

of the composition fαα ◦ u|α lies in the unit spaceM2 of G2. We thus obtain a family of smooth
maps

fα := fαα ◦ u|α : Ωα →M2.

The second property in the definition also implies

∀γ ∈ (G1)
Ωα

Ωβ
: r(fαβ(γ)) = fα(r(γ)), s(fαβ(γ)) = fβ(s(γ)). (3.1)

In particular, any representative of fαβ(u(x)) ∈ G2 for x ∈ Ωα ∩ Ωβ is a leafwise path in M2

between fα(x) and fβ(x).
Furthermore, (3.1) implies that if c is a path in Ωα which is contained in a single leaf then

fα ◦ c is also contained in a single leaf. Thus, dfα maps TxF1 to Tfα(x)F2.
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Finally, composition of two smooth maps f : M1/F1 →M2/F2, g : M2/F2 →M3/F3 works,
of course, as follows. Let

(
{Ωα}α∈I , {fαβ}(α,β)∈I×I

)
,
(
{Θξ}ξ∈J , {gξζ}(ξ,ζ)∈J×J

)

be the sets of data defining f, g, respectively. Then g ◦ f is defined by the open cover of G1

consisting of the sets Φ(α,ξ) := f−1
α (Θξ) with (α, ξ) ∈ I × J and the compositions gξζ ◦ fαβ

which are defined on the sets (G1)
Φ(α,ξ)

Φ(β,ζ)
.

The main result of this section is the following functoriality theorem.

Theorem 3.3. The foliated cone construction is a functor from the category of foliations
and smooth maps of leaf spaces between them to the category of metrizable coarse spaces and
coarse equivalence classes of coarse Borel maps between them.

Proof. Assume we are given two compact foliations (M1,F1), (M2,F2) and a smooth map
f :M1/F1 →M2/F2 between the leaf spaces consisting of the data specified in Definition 3.1.
The first step of the proof is to define the induced map f∗ : O(M1,F1) → O(M2,F2) between
the foliated cones.
Before we start making some choices, let us fix Riemannian metrics g1, g2 on M1,M2 which

we shall use for the construction of the foliated cones O(M1,F1), O(M2,F2), respectively.
Because of compactness of M1, we can find a finite open cover (Ω′

i)i=1,...,m such that the
closure of each Ω′

i is compact and contained in some Ωα(i). Denote the restriction of fα(i) to

Ω′
i by fi and the restriction of fα(i)α(j) to (G1)

Ω′
i

Ω′
j

by fij . Furthermore, choose a Borel map

i :M1 → {1, . . . ,m}, x 7→ ix such that ∀x ∈M1 : x ∈ Ω′
ix .

Proposition 3.4. With notations as above, the map

f∗ : O(M1,F1) → O(M2,F2), (t, x) 7→ (t, fix(x))

is a coarse Borel map. The coarse equivalence class of this map is independent of the choices
made. Furthermore, the coarse equivalence class only depends on the equivalence class of the
smooth map f .

Proof. The following observation is central to the proof.

Lemma 3.5. There is a constant L such that for all 1 ≤ i, j ≤ m and x ∈ Ω′
i ∩ Ω′

j the points
fi(x), fj(x) are joined by a leafwise path of length at most L. In particular, the points

(t, fi(x)), (t, fj(x)) ∈ O(M2,F2)

have distance at most L for all t ≥ 0.

Proof. The length function on the holonomy groupoid G2 is bounded on the compact subset
⋃

1≤i,j≤m
fij(u(Ω′

i ∩ Ω′
j))

by Corollary 2.8. As we observed above, the points fi(x), fj(x) are joined by any representative
of some element in this compact set.
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Because of this Lemma, the choice of the Borel map i :M1 → {1, . . . ,m} affects the map f∗
only by a distance of at most L and therefore the coarse equivalence class remains unchanged.
Independence of the finite and compact refinement (Ω′

i)i=1,...,m′ is clear, as this family may be
enlarged by a finite number of open sets while leaving the Borel map i and therefore also f∗
unchanged. For exactly the same reason, equivalent smooth maps between the leaf spaces also
induce coarsely equivalent maps between the foliated cones.
It remains to show that f∗ is a coarse map. Properness is clear, but the expansion condition

has to be verified. We start with a little calculation.

Lemma 3.6. There is a constant K such that whenever i ∈ {1, . . . ,m} and c : [0, 1] →
[0,∞)× Ω′

i is a smooth path then the length estimate

L((id× fi) ◦ c) ≤ K · L(c)

holds. Here, the length of the curve c is measured by equipping [0,∞)× Ω′
i with the restricted

metric as a subset of O(M1,F1), and the length of (id× fi) ◦ c is, of course, measured in
O(M2,F2).

Proof. Let

K ′ := max
i=1,...,m

sup
x∈Ω′

i

‖dfi(x)‖ .

Consider a tangent vector ξ ∈ T(t,x)O(M1,F1) at a point (t, x) ∈ [0,∞)× Ω′
i. We write ξ =

λ ∂
∂t + ξ‖ + ξ⊥ according to the orthogonal decomposition

T(t,x)O(M1,F1) = R
∂

∂t
⊕ TxF1 ⊕NxF1.

Its norm is given by

‖ξ‖2 = λ2 + ‖ξ‖2 + t2‖ξ⊥‖2 = λ2 + ‖ξ‖‖2 + (1 + t2)‖ξ⊥‖2.

Now recall that dfi(ξ‖) is tangent to F2. Thus, we can calculate

‖dfi(ξ)‖2 = ‖λ ∂
∂t

+ dfi(ξ‖) + dfi(ξ⊥)‖2

= λ2 + ‖dfi(ξ‖) + dfi(ξ⊥)‖‖2 + (1 + t2)‖dfi(ξ⊥)⊥‖2

≤ λ2 + (‖dfi(ξ‖)‖+ ‖dfi(ξ⊥)‖)2 + (1 + t2)‖dfi(ξ⊥)‖2

≤ λ2 +K ′2(‖ξ‖‖+ ‖ξ⊥‖)2 +K ′2(1 + t2)‖ξ⊥‖2

≤ λ2 + 2K ′2‖ξ‖‖2 +K ′2(3 + t2)‖ξ⊥‖2

and now we see that ‖dfi(ξ)‖ ≤ K‖ξ‖ for

K =
√
max(1, 3K ′2).

The claim follows.

Let R > 0. We have to find S > 0 such that whenever z, z′ ∈ O(M1,F1) are points of distance
less than R then the distance between f∗(z), f∗(z′) is less than S. We can estimate the distance
between f∗(z), f∗(z′) by a sequence of paths as in Lemma 3.6 and jumps between points
(t, fi(x)), (t, fj(x)) of length ≤ L as in Lemma 3.5. The only thing we need more is an upper
bound for the number of jumps needed.
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Lemma 3.7. Let R > 0. There is k ∈ N such that whenever c : [0, 1] →M1 is a path of
length ≤ R, then there are 0 = s0 ≤ · · · ≤ sk = 1 such that for each l = 0, . . . , k − 1 the image
of c|[sl,sl+1] is contained in some Ω′

i(l).

Proof. Let ε > 0 be such that every ε-ball in M1 is contained in some Ω′
i. Then the claim

follows easily for some fixed k > R/2ε.

Now if z, z′ ∈ O(M1,F1) are less than distance R apart, then they are joined by a path

(t, c) : [0, 1] → O(M1,F1)

of length less than R. It follows that c : [0, 1] →M1 has length less than R (measured in g1),
too, and we can apply Lemma 3.7. With sl, i(l) as in the lemma, we can now go from

f∗(z) = (t(s0), fic(s0)
(c(s0))) to f∗(z

′) = (t(sk), fic(sk)
(c(sk)))

by first jumping to the point (t(s0), fi(0)(c(s0))), then following the path

(t|[s0,s1], fi(0) ◦ c|[s0,s1])

to the point (t(s1), fi(0)(c(s1))), then jumping again to (t(s1), fi(1)(c(s1))) and so on. We reach
the endpoint after k + 1 jumps of length at most L and k smooth paths in between, whose
total length is at most K ·R.
Thus, S := (k + 1)L+KR has the desired properties. This finishes the proof of Proposition

3.4.

An easy corollary, which one could also prove directly, is the following.

Corollary 3.8. The coarse structure of the foliated cone O(M,F) is independent of the
chosen metric on M .

Proof. Applying the Proposition to the smooth map of leaf spaces M/F →M/F given by
the one element open cover {M} of M and the map id : G = GMM → G shows that the identity
between the cones on the left and right hand side, which are allowed to be constructed with
different metrics on M , is always a coarse map.

With induced maps being defined as in Proposition 3.4, functoriality is in fact obvious,
provided one makes the canonical choices in the construction of (g ◦ f)∗. This finishes the
proof of Theorem 3.3.

We conclude this section with easy but fundamental examples of such induced coarse maps.

Example 3.9. There is an obvious functor from the category of smooth compact manifolds
to the category of compact foliations and smooth maps of leaf spaces: A manifoldM is mapped
to the trivial 0-dimensional foliation (M,FM

0 ) on M . A smooth map f :M → N induces the
smooth map of leaf spaces f :M/FM

0 → N/FN
0 given by the following data: The graphs of

(M,FM
0 ), (N,FN

0 ) are M,N themselves and f : M/FM
0 → N/FN

0 is given by the one element
cover M and the smooth function f :M → N . The induced map OM → ON is the obvious
one: id[0,∞) ×f .
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Example 3.10. Given a compact foliation (M,F), there is a canonical smooth map of leaf
spaces

p :M →M/F ,

the left hand side being M/F0 for the trivial 0-dimensional foliation F0 on M . The graph of
(M,F0) is simply M while we denote the graph of (M,F) by G. The map p consists of the one
element open cover {M} of M and the unit map M =MM

M → G.
The induced coarse map OM → O(M,F) is simply the identity on the underlying topological

space [0,∞)×M . It is obviously 1-Lipschitz.

Example 3.11. Assume that the foliation (M,F) comes from a submersion p :M → B.
This submersion factors through a smooth map of leaf spaces p̃ : M/F → B which consists of
the one element covering {M} of M and the map

p ◦ s = p ◦ r : G = GMM → B

where G is the holonomy groupoid of (M,F) and B is the holonomy groupoid of the trivial
0-dimensional foliation on B. The induced coarse map we obtain is simply

p̃∗ = id[0,∞) ×p : O(M,F) → OB.

Now assume that p is surjective and all fibers of p are connected. In this case the fibers
are uniformly bounded when measured by the length of smooth leafwise paths. As leafwise
measured distances do not blow up in the foliated cone, we see that p̃∗ is a coarse equivalence.
This coarse equivalence is not surprising, because p̃ already is an isomorphism in the category

of foliations and equivalence classes of smooth maps between them. The inverse f : B →M/F
of p̃ is defined as follows. Let {Ωα} be an open cover of B such that for each α there is a smooth
section sα : Ωα → p−1(Ωα) of p over Ωα. Noting that the holonomy groupoid of (M,F) in this
special case is

G =M ×B M = {(x, y) ∈M ×M | p(x) = p(y)},

we can now define f by the cover {Ωα} and the maps

fαβ = (sα, sβ) : Ωα ∩ Ωβ →M ×B M.

One readily checks that f ◦ p̃ and p̃ ◦ f are indeed equivalent to the identities.

4. The new K-theory model

Finally, we have all prerequisites for introducing the new K-theory model.

Definition 4.1. The “Farrell-Jones” model for the K-theory of the leaf space of a foliation
(M,F) is

K−∗
FJ(M/F) := K∗(c(O(M,F))).

We also define the K-theory with coefficients in a C∗-algebra D by

K−∗
FJ(M/F , D) := K∗(c(O(M,F), D)).

It will be more convenient to perform proofs using the even more general groups
K∗(uc(O(M,F), D)). However, we will not give them any special name.
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Remark 4.2. A practical consequence arises from the fact that in the definition of the
foliated cone O(M,F) we did not crush {0} ×M to a point: The C∗-algebra C0(O(M,F)) ∼=
C0([0,∞)×M) is contractible and therefore the short exact sequence

0 → C0([0,∞)×M)⊗D → uc(O(M,F), D) → uc(O(M,F), D) → 0

implies that the quotient maps induce canonical isomorphisms

K∗(uc(O(M,F), D)) ∼= K∗(uc(O(M,F), D)).

Indeed, working with the compactification instead of the corona makes calculating the examples
in the following section much easier.

The rest of this section is devoted to showing basic properties of the “Farrell-Jones”K-theory
which justify why it is a good K-theory model.
One might expect that K-theory models of “spaces” have some ring structure and

contravariant functoriality, and indeed:

Theorem 4.3. The groups K∗
FJ(M/F) constitute a contravariant functor from the

category of foliations and smooth maps between leaf spaces into the category of Z2-graded,
graded commutative rings. The obvious analogous statements hold for the more general groups
K∗
FJ(M/F , D) and K∗(uc(O(M,F), D)).

Proof. Functoriality is the result of combining Theorem 3.3 with Proposition 2.3. The
multiplicative structures are provided by Definition 2.4.

Furthermore, we mention the following two examples, which serve as a basic test for the
Farrell-Jones K-theory model.

Example 4.4. Let M be a compact manifold. From [Wul14, Proposition 6.2] we know
that the inclusion C(M)⊗ K ⊂ c(OM) induces a ring isomorphism

K∗(M)
∼=−→ K∗

FJ(M),

the right hand side being K∗
FJ(M/F) for the trivial 0-dimensional foliation on M . Using

Example 3.9 one readily checks that this isomorphism is natural under smooth maps of
manifolds. Thus, our K-theory of leaf spaces extends K-theory of ordinary manifolds.
Furthermore, note that the identification of 4.2 allows an easy description of a (right-sided

and therefore also two-sided) inverse to this isomorphism: It is simply induced by the restriction

c(OM) → C(M)⊗ K, f 7→ f |{0}×M .

Example 4.5. Assume that the foliation (M,F) comes from a surjective submersion p :
M → B with all fibers connected. We saw in Example 3.11 that there is an induced isomorphism
of leaf spaces p̃ :M/F ∼= B inducing the coarse equivalence p̃∗ = id[0,∞)×p : O(M,F) → OB
between the corresponding foliated cones.
Combining this with the previous example, there is a canonical ring isomorphism

K∗(B) ∼= K∗
FJ(B)

p̃∗−→∼= K∗
FJ(M/F)

induced by the inclusion

C(B)⊗ K →֒ c(O(M,F)), g 7→ (t, x) 7→ p∗g(x).
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Here and in the following, the overline denotes the equivalence class.
Analogously there are multiplicative homomorphisms

K−∗(C(B) ⊗D) ∼= K∗
FJ(B,D) ∼= K∗

FJ(M/F , D)

for any coefficient C∗-algebra D.

5. Nontrivial examples

In this section, we give some more examples of nontrivial elements in the ring K∗
FJ(M/F).

In general, one way of doing so is by constructing a continuous map φ : O(M,F) → X of
vanishing variation into some compact metric space X and using it to pull back elements of
K∗(X). More precisely, there is an induced ∗-homomorphism φ∗ : C(X)⊗ K → c(O(M,F))
and subsequently a homormorphism φ∗ : K∗(X) → K∗

FJ(M/F). Note that φ∗ is in fact a ring
homomorphism, because multiplicativity follows from the commutative diagram

O(M,F)

∆

��

φ // X

∆

��
O(M,F)×O(M,F)

φ×φ
// X ×X.

We would also like to have a method of distinguishing elements of K∗
FJ(M/F). In some

situations, an effective way to do this is to use the homomorphism

p∗ : K∗
FJ(M/F) → K∗(M)

induced by the canonical smooth map p :M →M/F of Example 3.10. After identifying
K∗
FJ(M/F) with K−∗(c(O(M,F))) and applying the isomorphism from Example 4.4, one

easily sees that p∗ is induced by the restriction ∗-homomorphism

c(O(M,F)) → C(M)⊗ K, f 7→ f |{0}×M . (5.1)

Note that we would not have this simple formula if we had stuck to the stable Higson corona
instead of the stable Higson compactification.

Example 5.1. Consider the one dimensional foliation of the 2-torus sketched in figure 1.
The slices T 2 × {t} ⊂ O(T 2,F) of the foliated cone become larger and larger in the horizontal
direction as t→ ∞. Given a unitary over C(S1), we can pull it back to T 2 via the projection
p onto the horizontal S1. Subsequently, the variation of the unitary may be pushed into small
neighborhoods of the compact leaves, where the metric blows up horizontally. By doing this,

we obtain a unitary in ˜c(O(M,F)) and thus an element of K1(c(O(M,F))) which is kind of a
pullback of an element of K1(S1) under the projection p.
The precise calculations involved are quite elaborate. We will perform them for a more

general setup in Example 5.2.

Example 5.2. Let F be a one dimensional foliation on some compact manifoldM and L a
leaf of this foliation which is diffeomorphic to S1 = R/Z. Assume that the normal bundle of L
is trivial, such that there is a tubular neighborhood of L diffeomorphic to Dn × S1 in which L
corresponds to {0} × S1. Assume further that within this neighborhood the foliation is given
by the trajectories of a unit vector field of the form

v(x, s) =
(
λ(x)x,

√
1− λ(x)2‖x‖2

)
∈ Rn × R ∼= T(x,s)(D

n × S1)
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❄

p

S1

(T 2,F)

Figure 1. A one dimensional foliation on the two torus.

for some continuous function λ : Dn → R. In particular, the vector field is S1-invariant in this
neighborhood.
The objectives of this example are to construct a ring homomorphism K∗(Sn) ∼=

Z[X ]/(X2) → K∗
FJ(M/F) and to show that it is injective for M = Sn × S1. Thus, it is an

example with nontrivial ring structure which is quite different from example 4.5.
We are free to choose any Riemannian metric g on M to construct the foliated cone.

Therefore, we may assume without loss of generality that it is the canonical one on the tubular
neighborhood Dn × S1.
The first step is to construct a continuous map of vanishing variation Φ : O(M,F) → Sn as

follows. Consider the map

φ : Dn × S1 × [0,∞) → Rn, (x, s, t) 7→
{

log(t‖x‖+1)
log(t+1)

x
‖x‖ t > 0

x t = 0.

It is smooth and maps Sn−1 × S1 × [0,∞) to Sn−1. Furthermore, let exp : Rn → Sn be the
exponential map at the north pole e of the sphere. It maps π · Sn−1 to the south pole −e and
is Lipschitz continuous with constant 1.

Lemma 5.3. The continuous map

Φ : O(M,F) → Sn

x 7→
{
exp(π · φ(x)) x ∈ Dn × S1 × [0,∞)

−e else

has vanishing variation.

Proof. Note that it is enough to show that φ has vanishing variation with respect to the
restricted metric on Dn × S1 × [0,∞). To this end, let w = (ξ, µ) ∈ Rn × R ∼= T(x,s)(D

n × S1).
Denote by w‖ = 〈w, v(x, s)〉 · v(x, s) its component tangential to the leaves. Furthermore, we
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decompose the Rn-component ξ = ξ⊥ + ξ‖ of w into a component ξ‖ := 〈ξ,x〉
‖x‖2 x parallel to x

and a component ξ⊥ perpendicular to it. In the norm corresponding to the Riemannian metric
gt := g + t2gN , we have

‖w‖2t = ‖w‖2 + t2‖w − w‖‖2

= (1 + t2)‖w‖2 − 2t2〈w,w‖〉+ t2‖w‖‖2

= (1 + t2)‖w‖2 − t2〈w, v(x, s)〉2

= (1 + t2)(‖ξ‖2 + µ2)− t2
(
λ(x)〈ξ, x〉 + µ

√
1− λ(x)2‖x‖2

)2
.

By minimizing this quadratic expression in µ and defining L := ‖λ‖∞, we obtain the inequality

‖w‖2t ≥ (1 + t2)‖ξ⊥‖2 +
1 + t2

1 + t2L2‖x‖2 ‖ξ‖‖
2.

Thus, the norm of the tangential vector w + η ∂∂t = (ξ, µ, η) ∈ Rn × R× R ∼= T(x,s,t)O(M,F) is
bounded from below by

∥∥∥∥w + η
∂

∂t

∥∥∥∥
2

≥ (1 + t2)‖ξ⊥‖2 +
1 + t2

1 + t2L2‖x‖2 ‖ξ‖‖
2 + η2.

On the other hand, we define f(r, t) := log(rt+1)
log(t+1) and calculate

Dφ

(
w + η

∂

∂t

)
= f(‖x‖, t) ξ⊥‖x‖ +

∂f

∂r
(‖x‖, t)ξ‖ + η

∂f

∂t
(‖x‖, t) x

‖x‖ .

Thus,
∥∥∥∥Dφ

(
w + η

∂

∂t

)∥∥∥∥
2

=
f(‖x‖, t)2

‖x‖2 ‖ξ⊥‖2 +
(
∂f

∂r
(‖x‖, t)‖ξ‖‖ ±

∂f

∂t
(‖x‖, t)η

)2

≤
(

f(‖x‖, t)2
(1 + t2)‖x‖2 + 2

(
∂f

∂r
(‖x‖, t)

)2
1 + t2L2‖x‖2

1 + t2
+ 2

(
∂f

∂t
(‖x‖, t)

)2
)∥∥∥∥w + η

∂

∂t

∥∥∥∥
2

.

Vanishing variation of φ therefore follows from the fact that the three expressions

f(r, t)2

(1 + t2)r2
=

log(rt+ 1)2

log(t+ 1)2(1 + t2)r2
(
∂f

∂r
(r, t)

)2
1 + t2L2r2

1 + t2
=

1

log(t+ 1)
· t2

1 + t2
· 1 + t2L2r2

(tr + 1)2

∂f

∂t
(r, t) =

r

(rt + 1) log(t+ 1)
− log(rt + 1)

(t+ 1) log(t+ 1)2

converge to 0 uniformly in r ∈ (0, 1] for t→ ∞, as is readily verified.

According to our remarks at the beginning of this section we obtain:

Corollary 5.4. The map Φ induces a ring homomorphism

Φ∗ : K∗(Sn) → K∗
FJ(M/F).

Furthermore, the composition p∗ ◦ Φ∗ : K∗(Sn) → K∗(M) is induced by the continuous map

ψ :M → Sn, x 7→
{
exp(π · y) if x = (y, s) ∈ Dn × S1

−e else.
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If we specialize to the caseM = Sn × S1 whereDn × S1 ⊂M is assumed to come from an inclu-
sion Dn ⊂ Sn, then the map ψ is homotopic to the canonical projection Sn × S1 → Sn. Thus,
p∗ ◦ Φ∗ = ψ∗ : K∗(Sn) → K∗(Sn × S1) is injective. In particular, the ring homomorphism

Φ∗ : K∗(Sn) ∼= Z[X ]/(X2) →֒ K∗
FJ(M/F)

is injective. We have thus detected some nontrivial ring structure inside of K∗
FJ(M/F).

The relation of the new K-theory model to index theory will be discussed in Section 11,
where Corollary 11.3 gives a formula for indices of longitudinally elliptic operators twisted
by vector bundles F →M whose classes lie in the image of p∗ : K0

FJ(M/F) → K0(M). The
following definition provides an analytic way to verify this property. Examples of such bundles
are obtained by smoothing the construction in the previous example.

Definition 5.5. Let F →M be a smooth vector bundle. We say that it is asymptotically
a bundle over the leaf space if there is a smooth family of projections (Pt)t≥0 ∈ C∞(M ;K)
such that F is represented by the projection P0 and the norms

‖dPt|TF‖ = sup
06=X∈TF

‖dPt(X)‖
‖X‖

converge to zero for t→ ∞.

Here, the norm of dPt(X) is calculated in the C∗-algebra C(M ;K).
By reparametrising the t-parameter, we can always achieve that ‖∂Pt

∂t ‖ and 1√
1+t2

‖dPt|NF‖
converge to zero for t→ ∞, too. Choose a monotonously decreasing function K : [0,∞) →
[0,∞) converging to zero at infinity such that

∀t : K(t) ≥ max

(
‖dPt|TF‖,

1√
1 + t2

‖dPt|NF‖,
∥∥∥∥
∂Pt
∂t

∥∥∥∥
)
.

The Pt compose to give a projection P ∈ Cb(O(M,F);K). If γ : [0, 1] → O(M,F) is a smooth
path with t-component bigger then some fixed T , then we decompose γ′ = vL + vN + λ ∂

∂t into
longitudinal, normal and ∂/∂t-component and calculate

‖P (γ(1))− P (γ(0))‖ ≤
∫1
0

‖(P ◦ γ)′(τ)‖dτ

≤
∫1
0

∥∥∥∥dP (vL(τ)) + dP (vN (τ)) + λ(τ)
∂Pt
∂t

∥∥∥∥ dτ

≤ K(T ) ·
∫1
0

(
‖vL(τ)‖ +

√
1 + t(τ)2 · ‖vN(τ)‖ + |λ(τ)|

)
dτ

≤ 3K(T ) ·
∫1
0

‖γ′(τ)‖dτ = 3K(T ) · L(γ)

This calculation shows that P has vanishing variation, thus P ∈ c(O(M,F)). Let xF be its
class in K0

FJ(M/F). Formula (5.1) now immediately implies [F ] = p∗(xF ).
Note that the property of being asymptotically a bundle over the leaf space only implies

the existence of such an xF , not its uniqueness. Indeed, a different choice of the family of
projections (Pt)t≥0 might yield a different xF .
The element xF will become important in Corollary 11.3. It should be pointed out that the

index ind(DF ), which is computed in this corollary, does not depend on the above-mentioned
choice of the xF and the family (Pt)t≥0.
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6. Connes’ foliation algebra

We briefly recall the construction of Connes’ foliation algebra C∗
r (M,F). General references

for this section are [Con82, Sections 5,6], [Con94, Section 2.8] or [Kor09, Section 5].
Instead of working with half densities as in [Con82, Con94], we fix once and for all a

smooth, positive leafwise 1-density α ∈ C∞(M, |TF|). It pulls back to smooth densities r∗α
on Gx and s∗α on Gx for all x ∈M and we will always use these densities for integration. In
particular, if γ ∈ G with x = s(γ), y = r(γ) and f, g are functions on Gy, Gx, respectively, then
we shall write∫

γ1γ2=γ

f(γ1)g(γ2) : =

∫
γ1∈Gy

f(γ1)g(γ
−1
1 γ)s∗α(γ1) =

∫
γ2∈Gx

f(γγ−1
2 )g(γ2)r

∗α(γ2) .

In case G is Hausdorff, the leafwise convolution product

(f ∗ g)(γ) =
∫
γ1γ2=γ

f(γ1)g(γ2)

and the involution

f∗(γ) = f(γ−1)

turn the vector space C∞
c (G) of smooth complex valued functions with compact support on G

into a complex ∗-algebra.
If, however, the manifold structure on G is non-Hausdorff, then C∞

c (G) is by definition the
vector space of complex functions on G which are finite sums of smooth functions with compact
support in some coordinate patch of G. In this case, the convolution product of two functions
in C∞

c (G) is again in C∞
c (G), so C∞

c (G) is a complex ∗-algebra in the non-Hausdorff case, too.
This technicality does not interfere with our arguments at all, because we can always assume
without loss of generality that our functions are compactly supported in coordinate patches.
For each x ∈M , the Hilbert space L2(Gx) is defined by means of the density r∗α on Gx.

There is a representation πx : C∞
c (G) → B(L2(Gx)) given by

(πx(f)ξ)(γ) =

∫
γ1γ2=γ

f(γ1)ξ(γ2)

for all f ∈ C∞
c (G), ξ ∈ L2(Gx) and γ ∈ Gx.

Definition 6.1. The reduced foliation algebra C∗
r (M,F) is defined as the completion of

C∞
c (G) in the pre-C∗-norm given by ‖f‖r = supx∈M ‖πx(f)‖.

Remark 6.2. All the constructions above work equally well and give the same results if
we use continuous instead of smooth functions everywhere. Note, however, that in this context
the definition of continuous functions on a non-Hausdorff G has to be adapted analogously.

Definition 6.3 ([Con82]). Connes’ K-theory model for the leaf space of the foliation
(M,F) is

K∗
C(M/F) := K−∗(C

∗
r (M,F)).

The reduced foliation algebra C∗
r (M,F) can be understood as a sub-C∗-algebra of

B
(⊕

x∈M L2(Gx)
)
. We denote the canonical faithful representation by

π =
⊕

x∈M
πx : C∗

r (M,F) → B

(
⊕

x∈M
L2(Gx)

)
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There is also a canonical faithful representation

τ =
⊕

x∈M
τx : C(M) → B

(
⊕

x∈M
L2(Gx)

)

given by τx(g)ξ := r∗g · ξ. For f ∈ Cc(G) and g ∈ C(M), the pointwise products r∗g · f , s∗g · f
lie in Cc(G) and

τ(g)π(f) = π(r∗g · f), π(f)τ(g) = π(s∗g · f). (6.1)

Lemma 6.4. C(M) is canonically a sub-C∗-algebra of the multiplier algebraM(C∗
r (M,F))

of C∗
r (M,F). For f ∈ C∗

r (M,F) and g ∈ C(M) we have

τ(g)π(f) = π(gf), π(f)τ(g) = π(fg). (6.2)

Furthermore, if g ∈ Cc(G) then

gf = r∗g · f, fg = s∗g · f. (6.3)

Proof. Formula (6.1) implies that the image of τ lies in the largest sub-C∗-algebra

D ⊂ B

(
⊕

x∈M
L2(Gx)

)

which contains the image of π as an (essential) ideal. Thus, there is a canonical isometric
∗-homomorphism

C(M) → D → M(C∗
r (M,F)).

Equations (6.2) and (6.3) are clear by definition.

7. Hilbert modules associated to vector bundles

Smooth Z2-graded hermitian vector bundles E →M give rise to Z2-graded Hilbert modules
over C∗

r (M,F) which are particularly important in index theory. We review this construction
as presented in [Kor09, Section 5.3]. For an introduction into the theory of Hilbert modules
we refer to [Lan95].
As this is the first section featuring Z2-gradings, we take the opportunity to fix some notation:

If E is an ungraded Hilbert module over an ungraded C∗-algebraA and I, J ∈ N, then we denote
EI,J = EI ⊕ EJ , where by definition the first summand is the even graded and the second
summand is the odd graded part. In particular this applies to the cases A = C, where E is a
Hilbert space, and E = A being a C∗-algebra. For any Z2-graded Hilbert module E we denote by
B(E) and K(E) the C∗-algebras of adjointable respectively compact operators on E equipped
with the canonical Z2-grading. In the special case E = AI,J we obtain MI,J(A) := K(AI,J ),
which is the C∗-algebra of (I + J)× (I + J) matrices over A where the diagonal I × I- and
J × J-blocks constitute the even part and the off-diagonal blocks are the odd part.
The symbol ⊗̂ will always denote graded tensor products. More specifically, we use it in the

context of Z2-graded C
∗-algebras for the maximal graded tensor product. The minimal graded

tensor product will be denoted by ⊗̂min.
Finally, all types of morphisms between Z2-graded objects are always assumed to be grading

preserving, even without explicit mention.
Back to foliations: to define the Hilbert module E associated to E, let E∞ := C∞

c (G, r∗E) be
the vector space of smooth, compactly supported sections of the bundle r∗E → G. Again, if G is
non-Hausdorff, we define it by summing up smooth sections compactly supported in coordinate
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patches of G. There is a right module structure of E∞ over C∞
c (G) by letting f ∈ C∞

c (G) act
on ξ ∈ E∞ by the formula

(ξ ∗ f)(γ) :=
∫
γ1γ2=γ

ξ(γ1)f(γ2) ∀γ ∈ G .

A C∞
c (G) ⊂ C∗

r (M,F)-valued inner product 〈 , 〉E∞ on E∞ is defined by

〈ξ, ζ〉E∞(γ) :=

∫
γ1γ2=γ

〈ξ(γ−1
1 ), ζ(γ2)〉Er(γ2)

.

This inner product is positive and defines a norm ‖ξ‖r := ‖〈ξ, ξ〉E∞‖1/2r on E∞.

Definition 7.1. The Z2-graded Hilbert module E associated to the hermitian vector
bundle E →M is defined as the completion of E∞ in the norm ‖ ‖r. The module multiplication
of C∗

r (M,F) on E and the C∗
r (M,F)-valued inner product 〈 , 〉E on E are defined by extending

module multiplication of C∞
c (G) on E∞ and C∞

c (G)-valued inner product on E∞ continuously.

Again, one can perform these constructions using continuous instead of smooth sections.
If E = CI,J ×M →M is a trivial, Z2-graded bundle, then the associated Z2-graded Hilbert-

C∗
r (M,F)-module is E = (C∗

r (M,F))I,J . Its Z2-graded C
∗-algebras of compact and adjointable

operators are K(E) = MI,J (C
∗
r (M,F)) and B(E) = MI,J(M(C∗

r (M,F))), respectively.
An arbitrary Z2-graded vector bundle E →M may be embedded (grading preservingly) into

a trivial bundle CI,J ×M →M , such that E is the image of a projection p ∈ MI(C(M))⊕
MJ (C(M)) ⊂ MI,J (C(M)). Thus, p may be seen as a projection in

B((C∗
r (M,F))I,J ) = MI,J(M(C∗

r (M,F)))

which we also denote by p. It is easy to see, that the Z2-graded Hilbert-C∗
r (M,F)-module

E associated to E is canonically isomorphic to the image of this projection, E ∼= im(p) ⊂
(C∗

r (M,F))I,J . Consequently,

K(E) = pMI,J(C
∗
r (M,F))p ⊂ MI,J(C

∗
r (M,F)). (7.1)

We will need the following faithful representation of K(E):

Lemma 7.2. There is a canonical isometric inclusion

π : K(E) ⊂−→ B

(
⊕

x∈M
L2(Gx, r

∗E)

)

with the following property: if T ∈ K(E) is given on Cc(G, r
∗E) by convolution with a ∈

Cc(G, r
∗E ⊗ s∗E∗), then π(T ) acts on each summand L2(Gx, r

∗E) also by convolution with a.

Proof. Simply compose the inclusion (7.1) componentwise with the representation π of
C∗
r (M,F). Using Lemma 6.4, it is straightforward to verify that the image of this composition

is in fact contained in

B

(
⊕

x∈M
L2(Gx, r

∗E)

)
⊂ B

(
⊕

x∈M
L2(Gx,C

I,J)

)
.

The claimed property of this representation of K(E) follows directly from the analogous
property of the canonical representation of C∗

r (M,F).
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There is also a canonical isometric inclusion

τ : C(M)
⊂−→ B

(
⊕

x∈M
L2(Gx, r

∗E)

)

where g ∈ C(M) acts on each L2(Gx, r
∗E) by pointwise multiplication with r∗g. Completely

analogous to Lemma 6.4 we have:

Lemma 7.3. C(M) is canonically a sub-C∗-algebra of the multiplier algebra M(K(E)) =
B(E) of K(E). For T ∈ K(E) and g ∈ C(M) we have

τ(g)π(T ) = π(gT ), π(T )τ(g) = π(Tg).

Furthermore, if T ∈ K(E) is given by convolution with a ∈ Cc(G, r
∗E ⊗ s∗E∗) and g ∈ C(M),

then r∗g · a, s∗g · a ∈ Cc(G, r
∗E ⊗ s∗E∗), too, and gT is convolution with r∗g · a whereas Tg

is convolution with s∗g · a.

8. The asymptotic category and E-theory

This section is a brief summary of the basic definitions and properties of the asymptotic
category and E-theory. We use the picture of E-theory presented in [HG04]. A more detailed
exposition of E-theory, which is based on a slightly different definition, is found in [GHT00].

Definition 8.1 ([HG04, Definition 2.2],[GHT00, Definition 1.1]). Let B be a Z2-graded
C∗-algebra. The asymptotic C∗-algebra of B is

A(B) := Cb([1,∞), B)/C0([1,∞), B).

A is a functor from the category of Z2-graded C
∗-algebras into itself.

An asymptotic morphism is a graded ∗-homomorphism A→ A(B).

Definition 8.2 ([HG04, Definition 2.3],[GHT00, Definition 2.2]). Let A,B be Z2-graded
C∗-algebras. The asymptotic functors A

0,A1, . . . are defined by A
0(B) = B and

A
n(B) = A(An−1(B)).

Two ∗-homomorphisms φ0, φ1 : A→ An(B) are n-homotopic if there exists a ∗-homomorphism
Φ : A→ An(B[0, 1]), called n-homotopy between φ0, φ1, from which the ∗-homomorphisms
φ0, φ1 are recovered as the compositions

A
Φ−→ A

n(B[0, 1])
evaluation at 0,1−−−−−−−−−−→ A

n(B).

Lemma 8.3 ([GHT00, Proposition 2.3]). The relation of n-homotopy is an equivalence
relation on the set of ∗-homomorphisms from A to An(B).

Definition 8.4 ([HG04, Definition 2.4],[GHT00, Definition 2.6]). Let A,B be Z2-graded
C∗-algebras. Denote by JA,BKn the set of n-homotopy classes of ∗-homomorphisms from A to
An(B).

There are two natural transformations An → An+1: The first is defined by including An(B)
into An+1(B) = A(An(B)) as constant functions. The second is defined by applying the functor
An to the inclusion of B into AB as constant functions. Both of them define maps JA,BKn →
JA,BKn+1.
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Lemma 8.5 ([GHT00, Proposition 2.8]). The above natural transformations define the
same map JA,BKn → JA,BKn+1.

These maps organize the sets JA,BKn into a directed system

JA,BK0 → JA,BK1 → JA,BK2 → . . .

Definition 8.6 ([HG04, Definition 2.5],[GHT00, Definition 2.7]). Let A,B be Z2-graded
C∗-algebras. Denote by JA,BK∞ the direct limit of the above directed system. We denote the
class of a ∗-homomorphism φ : A→ An(B) by JφK.

Proposition 8.7 ([GHT00, Proposition 2.12]). Let φ : A→ An(B) and ψ : B → Am(C)
be ∗-homomorphisms. The class JψK ◦ JφK ∈ JA,CK∞ of the composite ∗-homomorphism

A
φ−→ A

n(B)
A

n(ψ)−−−−→ A
n+m(C)

depends only on the classes JφK ∈ JA,BK∞, JψK ∈ JB,CK∞ of φ, ψ. The composition law

JA,BK∞ × JB,CK∞ → JA,CK∞, (JφK, JψK) 7→ JψK ◦ JφK

so defined is associative.

For example, if n = m = 1 and φ, ψ lift to continuous maps

φ̃ : A→ Cb([1,∞), B), a 7→ [t 7→ φ̃t(a)],

ψ̃ : B → Cb([1,∞), C), b 7→ [s 7→ ψ̃s(b)],

respectively, then JψK ◦ JφK is represented by

A→ A
2(C), a 7→ t 7→ s 7→ ψ̃s(φ̃t(a)),

where the overline denotes equivalence classes. We will make use of this formula a few times
later on.
According to the proposition, we obtain a category:

Definition 8.8 ([HG04, Definition 2.6],[GHT00, Definition 2.13]). The asymptotic
category is the category whose objects are Z2-graded C∗-algebras, whose morphisms are
elements of the sets JA,BK∞, and whose composition law is defined in Proposition 8.7.

The identity morphism 1A ∈ JA,AK∞ is represented by the identity idA : A→ A = A0(A).
For arbitrary Z2-graded C

∗-algebras B,D, there are canonical asymptotic morphisms

A(B) ⊗̂D → A(B ⊗̂D) ḡ ⊗̂ d 7→ t 7→ g(t) ⊗̂ d

D ⊗̂ A(B) → A(D ⊗̂B) d ⊗̂ ḡ 7→ t 7→ d ⊗̂ g(t)

and inductively also canonical ∗-homomorphisms A
n(B) ⊗̂D → A

n(B ⊗̂D), D ⊗̂ A
n(B) →

An(D ⊗̂B). This is a consequence of [GHT00, Lemmas 4.1, 4.2 & Chapter 3].

Proposition 8.9 ([GHT00, Theorem 4.6]). The asymptotic category is a monoidal
category with respect to the maximal graded tensor product ⊗̂ of C∗-algebras and a tensor
product on the morphism sets,

⊗̂ : JA1, B1K∞ × JA2, B2K∞ → JA1 ⊗̂A2, B1 ⊗̂B2K∞,
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with the following property: If JφK ∈ JA1, B1K∞ and JψK ∈ JA2, B2K∞ are represented by φ :
A1 → Am(B1) and ψ : A2 → An(B2) , respectively, and D is another Z2-graded C∗-algebra,
then

JφK ⊗̂ 1D ∈ JA1 ⊗̂D,B1 ⊗̂DK∞,

1D ⊗̂ JψK ∈ JD ⊗̂A2, D ⊗̂B2K∞

are represented by the compositions

A1 ⊗̂D
φ⊗̂idD−−−−→ A

m(B1) ⊗̂D → A
m(B1 ⊗̂D),

D ⊗̂A2
idD ⊗̂ψ−−−−−→ D ⊗̂ A

n(B2) → A
n(D ⊗̂B2),

respectively.

The general form of the tensor product is of course

JφK ⊗̂ JψK = (JφK ⊗̂ 1B2) ◦ (1A1 ⊗̂ JψK) = (1B1 ⊗̂ JψK) ◦ (JφK ⊗̂ 1A2).

There is an obvious monoidal functor from the category of Z2-graded C
∗-algebras into the

asymptotic category which is the identity on the objects and maps a ∗-homomorphism A→ B
to its class in JA,BK∞ by considering it as a ∗-homomorphism A→ A0(B).
The definition of E-theory involves the following two Z2-graded C

∗-algebas. The first is K̂ =
B(ℓ̂2) = M1,1(K) – the Z2-graded C

∗-algebra of compact operators on the Z2-graded Hilbert

space ℓ̂2 = ℓ2 ⊕ ℓ2 with even and odd part equal to the standard separable, infinite dimensional
Hilbert space ℓ2.
The role of K̂ is stabilization: Given two separable, Z2-graded Hilbert spaces H1, H2, any

isometry V : H1 ⊗̂ ℓ̂2 → H2 ⊗̂ ℓ̂2 defines an injective ∗-homomorphism

AdV : K(H1) ⊗̂ K̂ → K(H2) ⊗̂ K̂, T 7→ V TV ∗.

The homotopy class of AdV is independent of the choice of V and therefore defines a canonical
isomorphism between K(H1) ⊗̂ K̂ and K(H2) ⊗̂ K̂ in the asymptotic category. The proof is a
standard argument which will also be referred to later on: Any two isometries V0, V1 : H1 ⊗̂ ℓ̂2 →
H2 ⊗̂ ℓ̂2 are homotopic in the strong operator topology to

(
V0
0

)
,

(
0
V1

)
: H1 ⊗̂ ℓ̂2 → H2 ⊗̂ ℓ̂2 ⊕H2 ⊗̂ ℓ̂2 ∼= H2 ⊗̂ ℓ̂2 ,

respectively, by a Hilbert’s hotel argument. These in turn are homotopic to each other via

Ṽt :=

(
cos(t)V0
sin(t)V1

)
. Combined we obtain a strongly continuous homotopy Vt between V0 and

V1. Now for every T ∈ K(H1) ⊗̂ K̂ the compactness of T implies that t 7→ AdVt
(T ) is even

norm-continuous, i. e. AdVt
is a homotopy of ∗-homomorphisms and the claim follows.

In particular, K̂ ⊗̂ K̂, K ⊗̂ K̂ and MI,J(C) ⊗̂ K̂ are all canonically isomorphic to K̂.
The second Z2-graded C

∗-algebra is C0(R), but with non-trivial grading given by the direct
sum decomposition into even and odd functions. This Z2-graded C

∗-algebra is denoted by S.
Recall from [HG04, Section 1.3] that S is also a co-algebra with co-unit η : S → C, f 7→ f(0)

and a co-multiplication ∆ : S → S ⊗̂ S. The definition of ∆ is not relevant to us, as we shall
explain below. It is enough to know the axioms of a co-algebra, i. e. that

S ∆ //

∆
��

S ⊗̂ S

id ⊗̂∆
��

S

id

��

id //

∆

!!❉
❉

❉

❉

❉

❉

❉

❉

S

S ⊗̂ S
∆⊗̂id

// S ⊗̂ S ⊗̂ S S S ⊗̂ S
η⊗̂id

oo

η⊗̂id

OO (8.1)
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commute.

Definition 8.10. Let A,B be Z2-graded C
∗-algebras. The E-theory of A,B is

E(A,B) = JS ⊗̂A ⊗̂ K̂, B ⊗̂ K̂K∞.

It is a group with addition given by direct sum of ∗-homomorphisms

S ⊗̂A ⊗̂ K̂ → A
n(B ⊗̂ K̂)

(via an inclusion K̂⊕ K̂ →֒ K̂, which is canonical up to homotopy) and the zero element
represented by the zero ∗-homomorphism.

Remark 8.11. By [GHT00, Theorem 2.16], this definition is equivalent to [HG04,
Definition 2.1] when A,B are separable. For non-separable C∗-algebras, however, it is essential
to use Definition 8.10, because otherwise the products defined below might not exist.

There is a composition product

E(A,B) ⊗ E(B,C) → E(A,C), (φ, ψ) 7→ ψ ◦ φ,
where ψ ◦ φ ∈ E(A,C) is defined to be the composition

S ⊗̂A ⊗̂ K̂
∆⊗̂id

A⊗̂K̂−−−−−−→ S ⊗̂ S ⊗̂A ⊗̂ K̂
idS ⊗̂φ−−−−→ S ⊗̂B ⊗̂ K̂

ψ−→ C ⊗̂ K̂

of morphisms in the asymptotic category.
There is also an exterior product

E(A1, B1)⊗ E(A2, B2) → E(A1 ⊗̂A2, B1 ⊗̂B2), (φ, ψ) 7→ φ ⊗̂ ψ,

where φ ⊗̂ ψ ∈ E(A1 ⊗̂A2, B1 ⊗̂B2) is defined to be the composition

S ⊗̂ A1 ⊗̂ A2 ⊗̂ K̂
∆⊗̂id−−−→ S ⊗̂ S ⊗̂A1 ⊗̂A2 ⊗̂ K̂ ∼= S ⊗̂A1 ⊗̂ K̂ ⊗̂ S ⊗̂A2 ⊗̂ K̂

φ⊗̂ψ−−−→ B1 ⊗̂ K̂ ⊗̂B2 ⊗̂ K̂ ∼= B1 ⊗̂B2 ⊗̂ K̂

of morphisms in the asymptotic category.

Theorem 8.12 ([HG04, Theorems 2.3, 2.4]). With these composition and exterior
products, the E-theory groups E(A,B) are the morphism groups in an additive monoidal
category E whose objects are the Z2-graded C

∗-algebras.

We conclude this section by mentioning some properies of E-theory needed for our
computations. Our earlier observations imply:

Theorem 8.13 (Stability). For any separable Z2-graded Hilbert space H , the Z2-graded
C∗-algebra K(H) is canonically isomorphic in the category E to C. In particular, this applies
to K̂, K and MI,J (C).

Theorem 8.14 ([HG04, Theorems 2.3, 2.4]). There is a monoidal functor from the
asymptotic category into E which is the identity on the objects and maps φ ∈ JA,BK∞ to
the morphism

S ⊗̂A ⊗̂ K̂
JηK⊗̂φ⊗̂1

K̂−−−−−−−→ B ⊗̂ K̂
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in the asymptotic category, which we denote by the same letter φ.

Thus, by taking the E-theory product with this E-theory element, we obtain homomorphisms

E(D,A)
φ◦−→ E(D,B), E(B,D)

◦φ−→ E(A,D)

for any third Z2-graded C
∗-algebra D. Consequently, the E-theory groups are contravariantly

functorial in the first variable and covariantly functorial in the second variable with respect to
morphisms in the asymptotic category and in particular with respect to ∗-homomorphisms.
These functorialities can be computed more easily than arbitrary composition products in

E-theory: If ψ ∈ E(D,A) and φ ∈ JA,BK∞, then φ ◦ ψ ∈ E(D,B) is the composition

S ⊗̂D ⊗̂ K
ψ−→ A ⊗̂ K̂

φ⊗̂1
K̂−−−−→ B ⊗̂ K

in the asymptotic category. This is, because the co-multiplication ∆ : S → S ⊗̂ S in the
definition of the composition product in E-theory cancels with the co-unit η : S → C appearing
in the functor from the asymptotic category to E-theory by (8.1).
Similarly, if ψ ∈ E(B,D) and φ ∈ JA,BK∞, then ψ ◦ φ ∈ E(A,D) is the composition

S ⊗̂A ⊗̂ K̂
1S⊗̂φ⊗̂1

K̂−−−−−−→ S ⊗̂B ⊗̂ K̂
ψ−→ B ⊗̂ K̂,

and the exterior product of φ ∈ E(A1, B1) and ψ ∈ JA2, B2K∞ is the composition

S ⊗̂A1 ⊗̂A2 ⊗̂ K̂
φ⊗̂ψ−−−→ B1 ⊗̂B2 ⊗̂ K̂.

In our applications in the following sections, we have to compute products only in cases
where one of the factors comes from an asymptotic morphism and not from an E-theory class.
This is the reason why our computations will not involve ∆ and thus we don’t have to know
its definition.
Generalizing the functor from the asymptotic category to the E-theory category, elements

of E(A,B) are also obtained from any morphism in the asymptotic category of the form

A ⊗̂ K(H1) → B ⊗̂ K(H2) or S ⊗̂A ⊗̂ K(H1) → B ⊗̂ K(H2)

where H1, H2 are arbitrary separable, Z2-graded Hilbert spaces. The E-theory element is
obtained by tensoring with JηK ⊗̂ id

K̂
respectively id

K̂
and applying stability.

We shall also need invariance under Morita equivalence, which is the second part of the
following theorem:

Theorem 8.15. Let E be a countably generated, Z2-graded Hilbert module over a Z2-
graded C∗-algebra B. Given an isometric, grading preserving inclusion V : E ⊂ B ⊗̂H , where
H is a separable, Z2-graded Hilbert space, we obtain an isometric ∗-homomorphism AdV :
K(E) ⊂ B ⊗̂ K(H) which induces an element ΘE ∈ E(K(E), B).

(i) This element ΘE always exists and is independent of the choice of the inclusion.
(ii) If E is full, i. e. 〈E , E〉 = B, and B has a strictly positive element, then ΘE is invertible.

Proof. Because of stability we may assumeH = ℓ̂2. The existence of an inclusion E ⊂ B ⊗̂ ℓ̂2

is guaranteed by Kasparov’s stabilization Theorem [Kas80a, Theorem 2].
To prove uniqueness, we use the standard argument seen earlier: Any two isometric

and grading preserving inclusions V0,1 : E ⊂−→ B ⊗̂ ℓ̂2 are homotopic in the strong operator
topology and thus AdV0,1 are homotopic ∗-homomorphisms between the C∗-algebras of compact
operators.
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The same argument also proves that we can homotop V ⊗̂ idℓ̂2 to the isomorphism E ⊗ ℓ̂2 ∼=
B ⊗̂ ℓ̂2 which always exists under the additional assumptions of the second part by [MP84,
Theorems 1.9]. Thus, ΘE is represented by a ∗-isomorphism and is therefore invertible.
Note that the cited theorems are only formulated for the ungraded case, but Z2-gradings are

readily implemented into their proofs.

Corollary 8.16. If E →M is nowhere zero dimensional, then the inclusion

K(E) ⊂ MI,J(C
∗
r (M,F))

of Equation (7.1) induces an invertible element of E(K(E), C∗
r (M,F)).

Proof. The foliation algebra C∗
r (M,F) is separable and thus contains a strictly positive

element by [AK69]. The Hilbert-C∗
r (M,F)-module E is full, because E is nowhere zero

dimensional.

The additive monoidal category KK, whose objects are separable Z2-graded C∗-algebras,
has similar properties as E ([Kas80b], see also [Bla98]). Recall that its morphism groups
KK(A,B) are defined for all Z2-graded C∗-algebras where A is separable (B need not
be separable). The functor from the category of Z2-graded separable C∗-algebras and ∗-
homomorphisms to E factors canonically throughKK. The mapsKK(A,B) → E(A,B) of this
functor also exist when B is not separable and are isomorphisms if A is nuclear. In particular,
the functor E(C, ) from the category of Z2-graded C

∗-algebras to abelian groups is canonically
naturally isomorphic to K-theory.
Index theory is usually formulated in terms of KK-theory whereas we have to use E-theory.

Therefore, we have to know these maps explicitly to transfer basic notions to E-theory.
In the unbounded picture ofKK-theory of [BJ83] (see also [Bla98, Section 17.11]), elements

of KK(A,B) are represented by triples (E , ρ,D), where

– E is a countably generated, Z2-graded Hilbert-B-module,
– ρ : A→ B(E) is a grading preserving representation of A on E ,
– D is an odd selfadjoint regular operator on E

such that for all a in a dense subset of A, the commutator [ρ(a), D] is densely defined and
extends to a bounded operator on E and ρ(a)(D ± i)−1 ∈ K(E).

Proposition 8.17 (cf. [CH, Section 8]). Under the canonical map

KK(A,B) → E(A,B),

the element represented by the triple (E , ρ,D) is mapped to the class of the asymptotic
morphism

S ⊗̂A→ A(K(E)), f ⊗̂ a 7→ t 7→ ρ(a)f(t−1D)

in E(A,K(E)) composed with the element ΘE ∈ E(K(E), B) of Theorem 8.15.

9. The module structure on Connes’ K-theory model

We are now going to define the module structure. Recall the objects we have introduced
so far: (M,F) is a foliation and O(M,F) its foliated cone constructed with respect to some
Riemannian metric on M . Furthermore, E denotes a smooth hermitian vector bundle over M
and E the associated Hilbert module.
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If D is any coefficient C∗-algebra and g ∈ uc(O(M,F), D), then gt ∈ C(M) ⊗̂D denotes the
restriction of g to {t} ×M ⊂ O(M,F). Furthermore, we may consider gt as an element of
B(E) ⊗̂D by Lemma 7.3.
The main ingredient of the module structure is the following asymptotic morphism.

Theorem 9.1. For each coefficient C∗-algebra D, there is an asymptotic morphism

mD : uc(O(M,F), D) ⊗̂ K(E) → A(K(E) ⊗̂min D)

ḡ ⊗̂ T 7→ t 7→ gt · (T ⊗̂ 1D̃).

Proof. Denote by D̃ the unitalization of D. There is an obvious inclusion

αmax : K(E) → A(B(E) ⊗̂ D̃)

as constant functions. Furthermore, the composition

uc(O(M,F), D) ⊂ Cb([0,∞)×M,D) = Cb([0,∞), C(M) ⊗̂D)

⊂ Cb([0,∞),B(E) ⊗̂ D̃) ։ A(B(E) ⊗̂ D̃)

obviously descends to give a ∗-homomorphism

βmax : uc(O(M,F), D) → A(B(E) ⊗̂ D̃).

Let α, β be obtained from αmax, βmax by passing from the maximal tensor product to the
minimal tensor product B(E) ⊗̂min D̃.
In the following lemma, the vanishing variation of g enters the game:

Lemma 9.2. For all T ∈ K(E) and g ∈ uc(O(M,F), D), the commutator [β(ḡ), α(T )] ∈
A(B(E) ⊗̂min D̃) vanishes.

Proof. Let ρ : D̃ → B(H ′) be a faithful representation. The minimal tensor product
K(E) ⊗̂min D̃ may be defined as the image of the ∗-homomorphism

π ⊗̂ ρ : K(E) ⊗̂ D̃ → B

(
⊕

x∈M
L2(Gx, r

∗E) ⊗̂H ′
)
.

Lemma 7.3 implies

(π ⊗̂ ρ)(gt · (T ⊗̂ 1D̃)) = (τ ⊗̂ ρ)(gt) · (π ⊗̂ ρ)(T ⊗̂ 1D̃),

(π ⊗̂ ρ)((T ⊗̂ 1D̃) · gt) = (π ⊗̂ ρ)(T ⊗̂ 1D̃) · (τ ⊗̂ ρ)(gt).

By definition of τ , the operator (τ ⊗̂ ρ)(gt) acts on each L2(Gx, r
∗E) ⊗̂H ′ ∼= L2(Gx, r

∗E ⊗̂H ′)
by multiplication with r∗(ρ ◦ gt) ∈ C(Gx,B(H ′)).
We may assume without loss of generality that the operator T ∈ K(E) acts on Cc(G, r∗E) ⊂ E

by convolution with some a ∈ Cc(G, r
∗E ⊗̂ s∗E∗) supported in a compact subset K of some

coordinate chart of G. According to Corollary 2.10, the norms

εt := ‖(s∗gt − r∗gt)|K‖C(K,D)
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tend to zero as t→ ∞. For ξ ∈ L2(Gx, r
∗E) ⊗̂H ′ ∼= L2(Gx, r

∗E ⊗̂H ′) we may now calculate:

‖(π ⊗̂ ρ)([gt, T ⊗̂ 1D̃])(ξ)‖2L2(Gx,r∗E)⊗̂H′ =

= ‖[(τ ⊗̂ ρ)(gt), (π ⊗̂ ρ)(T ⊗̂ 1D̃)](ξ)‖2L2(Gx,r∗E)⊗̂H′ =

=

∫
γ∈Gx

∥∥∥∥(idEr(γ)
⊗̂ρ(gt(r(γ)))

∫
γ1γ2=γ

(a(γ1) ⊗̂ idH′ )ξ(γ2)−

−
∫
γ1γ2=γ

(a(γ1) ⊗̂ idH′)(idEr(γ2)
⊗̂ρ(gt(r(γ2)))ξ(γ2)

∥∥∥∥
2

Er(γ)⊗̂H′

=

∫
γ∈Gx

∥∥∥∥
∫
γ1γ2=γ

(a(γ1) ⊗̂ ρ(r∗gt − s∗gt)(γ1))ξ(γ2)

∥∥∥∥
2

Er(γ)⊗̂H′

≤
∫
γ∈Gx

(∫
γ1γ2=γ

‖(r∗gt − s∗gt)(γ1)‖D · ‖a(γ1)‖(r∗E⊗̂s∗E∗)γ1
· ‖ξ(γ2)‖Er(γ2)⊗̂H′

)2

≤ ε2t ·
∫
γ∈Gx

(∫
γ1γ2=γ

‖a(γ1)‖(r∗E⊗̂s∗E∗)γ1
· ‖ξ(γ2)‖Er(γ2)⊗̂H′

)2

= ε2t ·
∥∥πx(a)2

(
‖ξ‖r∗E⊗̂H′

)∥∥2 ≤ ε2t · ‖πx(
a)‖2 · ‖ξ‖2

L2(Gx,r∗E)⊗̂H′

Here,
a∈ Cc(G) denotes the point-wise norm of a ∈ Cc(G, r

∗E ⊗̂ s∗E∗). It is a function in
Cc(G), because we have assumed that a is supported in some coordinate chart and is therefore
continuous in the usual sense. Thus, the inequality

‖(πx ⊗̂ ρ)([gt, T ⊗̂ 1D̃])‖ ≤ εt · ‖πx(a)‖

holds for all x ∈M . Taking the supremum over all x ∈M , we see that the norm of the
commutator

[gt, T ⊗̂ 1D̃] ∈ K(E) ⊗̂min D ⊂ B

(
⊕

x∈M
L2(Gx, r

∗E) ⊗̂H ′
)

is bounded by εt times the norm of
a∈ C∗

r (M,F) and thus tends to zero for t→ ∞. This
implies [β(g), α(f)] = 0 in A(B(E) ⊗̂min D̃).

Question 9.3. This proof uses an explicit calculation for the minimal tensor product.
Nevertheless, one can ask whether the analogous statement still holds for the commutator of
αmax, βmax.

According to this lemma, α and β combine to a ∗-homomorphism

mD : uc(O(M,F), D) ⊗̂ K(E) → A(B(E) ⊗̂min D̃).

Its image is contained in A(K(E) ⊗̂min D) and indeed it maps elementary tensors ḡ ⊗̂ T as
claimed.

From now on we will always assume that the coefficient algebras are nuclear to avoid mixing
up minimal and maximal tensor products.

Theorem 9.4. Let D1, D2 be nuclear C∗-algebras. Then, in the asymptotic category,

(JmD1K ⊗̂ 1D2) ◦ (1uc(O(M,F),D1) ⊗̂ JmD2K) = JmD1⊗̂D2
K ◦ (J∇K ⊗̂ 1K(E)).
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Recall that the ∗-homomorphism

∇ : uc(O(M,F), D1) ⊗̂ uc(O(M,F), D2) → uc(O(M,F), D1 ⊗̂D2)

is defined by multiplication of functions.

Proof. The left hand side is represented by the 2-homotopy class of

uc(O(M,F), D1) ⊗̂ uc(O(M,F), D2) ⊗̂ K(E) → A
2(K(E) ⊗̂D1 ⊗̂D2)

f̄ ⊗̂ ḡ ⊗̂ T 7→ t 7→ s 7→ (fs ⊗̂ gt) · (T ⊗̂ 1D̃1
⊗̂ 1D̃2

),

while the right hand side is represented by the 1-homotopy class of

uc(O(M,F), D1) ⊗̂ uc(O(M,F), D2) ⊗̂ K(E) → A(K(E) ⊗̂D1 ⊗̂D2)

f̄ ⊗̂ ḡ ⊗̂ T 7→ s 7→ (fs ⊗̂ gs) · (T ⊗̂ 1D̃1
⊗̂ 1D̃2

).

In these formulas, we have, of course, interpreted fs ⊗̂ gt and fs ⊗̂ gs as elements of C(M) ⊗̂
D1 ⊗̂D2 ⊂ B(E) ⊗̂D1 ⊗̂D2.
Similar to the definition of m, we construct a 2-homotopy

uc(O(M,F), D1) ⊗̂ uc(O(M,F), D2) ⊗̂ K(E) → A
2((K(E) ⊗̂D1 ⊗̂D2)[0, 1]).

There are three ∗-homomorphisms:

α̃ : K(E) → A
2((B(E) ⊗̂ D̃1 ⊗̂ D̃2)[0, 1])

T 7→ t 7→ s 7→ [r 7→ T ⊗̂ 1D̃1
⊗̂ 1D̃2

]

β̃ : uc(O(M,F), D2) → A
2((B(E) ⊗̂ D̃1 ⊗̂ D̃2)[0, 1])

g 7→ t 7→ s 7→ [r 7→ grs+(1−r)t ⊗̂ 1D̃1
]

γ̃ : uc(O(M,F), D1) → A
2((B(E) ⊗̂ D̃1 ⊗̂ D̃2)[0, 1])

f 7→ t 7→ s 7→ [r 7→ fs ⊗̂ 1D̃2
]

There is only one non-trivial property to be verified here, namely the continuity of

φ : [1,∞) → A((B(E) ⊗̂ D̃1 ⊗̂ D̃2)[0, 1])

t 7→ s 7→ [r 7→ grs+(1−r)t ⊗̂ 1D̃1
]

in the definition of β̃. This is a consequence of the following Lemma.

Lemma 9.5. Let X and Y be metric spaces, X complete. If g ∈ Cb(X,Y ) has vanishing
variation, then it is uniformly continuous.

Proof. Let ε > 0. Because of vanishing variation there is a compact subset K ⊂ X such
that

(x /∈ K ∨ y /∈ K) ∧ d(x, y) < 1 ⇒ d(g(x), g(y)) < ε.

On the compact set K however, uniform continuity is automatic. Combining these features,
the claim follows.

Using this lemma and the distance estimate

d( (rs+ (1 − r)t, x) , (rs+ (1 − r)t′, x) ) ≤ |t− t′|
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in O(M,F), we conclude

‖φ(t)− φ(t′)‖ =
∥∥∥s 7→ [r 7→ (grs+(1−r)t − grs+(1−r)t′) ⊗̂ 1D̃2

]
∥∥∥

≤ sup
s∈[0,∞),r∈[0,1],x∈M

‖g(rs+ (1− r)t, x) − g(rs+ (1 − r)t′, x)‖

t′→t−−−→ 0.

Now, β̃ and γ̃ factor through uc(O(M,F), D2) and uc(O(M,F), D1), respectively, and their
images commute with each other. Furthermore, their images commute with the image of
α̃: The vanishing of [γ̃(f), α̃(T )] is completely analogous to Lemma 9.2. For the vanishing
of [β̃(g), α̃(T )] we assume that T ∈ K(E) acts on Cc(G, r

∗E) by convolution with an a ∈
Cc(G, r

∗E ⊗̂ s∗E∗) compactly supported in some coordinate chart of G and calculate

‖[β̃(g), α̃(T )]‖ = lim sup
t→∞

lim sup
s→∞

sup
r∈[0,1]

‖ [grs+(1−r)t, T ⊗̂ 1D̃2
] ‖

≤ lim sup
t→∞

lim sup
s→∞

sup
r∈[0,1]

εrs+(1−r)t · ‖a‖r = 0,

where εt,
a∈ Cc(G) and the inequality are analogous to the ones in the proof of Lemma 9.2.

Thus, α̃, β̃, γ̃ combine to a 2-homotopy

uc(O(M,F), D1) ⊗̂ uc(O(M,F), D2) ⊗̂ K(E) → A
2((B(E) ⊗̂ D̃1 ⊗̂ D̃2)[0, 1]).

The image is obviously contained in A2((K(E) ⊗̂D1 ⊗̂D2)[0, 1]) so it is actually a 2-homotopy

uc(O(M,F), D1) ⊗̂ uc(O(M,F), D2) ⊗̂ K(E) → A
2((K(E) ⊗̂D1 ⊗̂D2)[0, 1]).

Evaluation at 0 yields the representative of

(JmD1K ⊗̂ 1D2) ◦ (1uc(O(M,F),D1) ⊗̂ JmD2K)

while evaluation at 1 is equivalent to the representative of

JmD1⊗̂D2
K ◦ ([∇] ⊗̂ 1K(E)).

One of our main results is now an easy corollary:

Corollary 9.6 (cf. [Roe95, Conjecture 0.2]). The group K∗(K(E)) is a module over
K−∗
FJ(M/F). The multiplication is

K−i
FJ(M/F)⊗Kj(K(E)) → Ki+j(c(O(M,F)) ⊗̂ K(E)) JmKK◦−−−−→ Ki+j(K(E)).

In particular, K∗
C(M/F) is a module over K∗

FJ(M/F).

Proof. Associativity of the module multiplication is a direct consequence of Theorem
9.4 applied with D1 = D2 = K. If E = C×M is the trivial one dimensional bundle, then
K(E) = C∗

r (M,F). This implies the special case mentioned, as K∗
C(M/F) = K−∗(C∗

r (M,F))
by definition.

Lemma 9.7. The Morita equivalence isomorphism

K∗(K(E)) ∼= K∗(C
∗
r (M,F)) = K−∗

C (M/F)

provided by Corollary 8.16 is a module isomorphism.
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Proof. The inclusion K(E) ⊂ MI,J(C) ⊗̂ C∗
r (M,F), which induces this isomorphism in K-

theory, obviously commutes with the asymptotic morphisms mK associated to K(E) and
MI,J(C) ⊗̂ C∗

r (M,F).

More general multiplications involving arbitrary coefficient C∗-algebras can be derived
similarly from Theorem 9.4.

10. Longitudinal index theory

This section is a very short introduction to longitudinal index theory. For more details we
refer primarily to [Kor09, Section 8.2], but of course also to [Con82, Con94, CS84].

Definition 10.1 (cf. [Con94, Section 2.9]). Let (M,F) be a foliated manifold, E →M
a Z2-graded smooth vector bundle and D : C∞(M,E) → C∞(M,E) a first order symmetric
differential operator of grading degree one. The operator D is called longitudinally elliptic if it
restricts to the leaves Lx of the foliation and the restricted operators

DLx
: C∞

c (Lx, E|Lx
) → C∞

c (Lx, E|Lx
)

are elliptic.

A special case are longitudinal Dirac type operators. Assume that M is equipped with a
Riemannian metric and E →M is a Z2-graded, smooth, hermitian vector bundle equipped
with a Clifford action of TF and a compatible connection ∇. The associated Dirac operator is
defined locally by the usual formula

D =

dimF∑

i=1

ei∇ei ,

where e1, . . . , edimF is any local orthonormal frame of TF .
If the bundle TF carries a spinc-structure, we obtain the longitudinal spinc-Dirac operator

/D by choosing E to be the corresponding spinor bundle. If the foliation is in addition even
dimensional, then E is Z2-graded and /D is a symmetric, grading degree one, longitudinally
elliptic operator.
Let E be the Hilbert module associated to E and let

DGx
: C∞

c (Gx, r
∗E) → C∞

c (Gx, r
∗E)

be the lift of DLx
to the holonomy cover Gx → Lx. The family {DGx

|x ∈M} assembles to a
differential operator

DG : C∞
c (G, r∗E) → C∞

c (G, r∗E).

Its closure, which we also denote by DG, is an odd, unbounded, selfadjoint operator on the
Hilbert module E constructed in Section 7. It is regular in the sense of [BJ83]. The proof of
regularity relies on the existence of a parametrix and can be found in [Vas01, Proposition
3.4.9].

Definition 10.2 ([Kor09, Section 8.2]). The KK-theory class of D is the element

[D] ∈ KK(C(M), C∗
r (M,F))

given in the unbounded picture of KK-theory by the triple (E , φ,DG) where φ : C(M) → B(E)
is the inclusion of Lemma 7.3. The index of D is the element

ind(D) ∈ K(C∗
r (M,F)) = K0

C(M/F)
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obtained from [D] by crushing M in the first variable to a point.

There are several advantages of having the KK-theory class [D] at hand. One of them is
the usual index pairing with vector bundles: Given a longitudinally elliptic operator D and a
smooth vector bundle F →M , we can construct the twisted operator

DF = D ⊗ F : C∞
c (M,E ⊗ F ) → C∞

c (M,E ⊗ F ),

which is again a longitudinally elliptic operator. A direct consequence of [Kuc97, Theorem 13]
is the following generalization of the index pairing formula.

Lemma 10.3. ind(DF ) = [D] ◦ [F ] ∈ K0
C(M/F).

Another appearence of the KK-theory class is the following. If TF is even dimensional and
endowed with a spinc structure, then the map p :M →M/F of Example 3.10 is K-oriented
and induces a wrong way map p! : K∗(M) → K∗

C(M/F) given by composition product with an
element p! ∈ KK(C(M), C∗

r (M,F)) [CS84]. In this particular case, p! is in fact the KK-theory
class of the spinc-Dirac operator /D.
For our purposes, we have to pass from KK- to E-theory. Under the canonical isomorphism

of Proposition 8.17, [D] corresponds to the following E-theory classes:

Definition 10.4. The E-theory class

JDK ∈ E(C(M),K(E)) ∼= E(C(M), C∗
r (M,F))

of a longitudinally elliptic Dirac type operator D over (M,F) is represented by the asymptotic
morphism

ρ : S ⊗ C(M) → A(K(E)), f ⊗ g 7→ t 7→ g · f(t−1DG).

Lemma 10.5. The index

ind(D) ∈ E(C,K(E)) ∼= E(C, C∗
r (M,F)) ∼= K0

C(M/F)

is represented by the ∗-homomorphism

S → K(E), f 7→ f(DG). (10.1)

Proof. By definition, ind(D) is represented by the asymptotic morphism

S → A(K(E)), f 7→ t 7→ f(t−1DG) . (10.2)

A natural candidate for a 1-homotopy between (10.2) and (10.1) is

S → A(K(E)[0, 1]), f 7→ t 7→ [r 7→ f((r + (1 − r)t−1)DG)] . (10.3)

We have to show that, for each f ∈ S, the function

[1,∞)× [0, 1] → K(E), (t, r) 7→ f((r + (1 − r)t−1)DG)

is continuous. This follows from continuity of

(0, 1] → S, λ 7→ f(λ · )

and the continuity of the functional calculus

S → K(E), f 7→ f(DG).
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Furthermore, (10.3) is a ∗-homomorphism, because the functional calculus is. Thus, it fulfills
all requirements on a 1-homotopy.

11. Twisted operators and the module structure

In this section, we clarify the relation of our module structure to index theory. To this end,
we make the following definition:

Definition 11.1. We denote by Jp∗K ∈ E(c(O(M,F)), C(M)) the E-theory class of the
asymptotic morphism

p∗ : c(O(M,F)) → A(C(M)⊗ K), ḡ 7→ t 7→ gt.

This notation comes from the fact that the composition product with Jp∗K yields the
homomorphism

p∗ : K∗
FJ(M/F) → K∗

FJ(M) ∼= K∗(M)

induced by the smooth map of leaf spaces p :M → M/F defined in Example 3.10. To see this,
recall that the isomorphism K∗

FJ(M) ∼= K∗(M) comes from the inclusion C(M)⊗ K ⊂ c(OM)
as constant functions. An inverse to this isomorphism is induced by the asymptotic morphism

c(OM) → A(C(M)⊗ K), ḡ 7→ t 7→ gt,

because the composition

C(M)⊗ K → c(OM) → A(C(M)⊗ K)

is simply the inclusion as constant functions and therefore the identity morphism in the
asymptotic category. The claim now follows from the fact that the homomorphism p∗ :
K∗
FJ(M/F) → K∗

FJ(M) comes from the inclusion c(O(M,F)) ⊂ c(OM).
Our main result relating the module structure to index theory is the following:

Theorem 11.2. Let D be a longitudinally elliptic operator over (M,F) and Jp∗K ∈
E(c(O(M,F)), C(M)) the element defined above. Then

JDK ◦ Jp∗K = JmKK ◦ (1c(O(M,F)) ⊗ ind(D)) ∈ E(c(O(M,F)),K(E)).

Before proving this theorem, here are two consequences:

Corollary 11.3. IfD is a longitudinally elliptic operator, F →M a smooth vector bundle
for which there is an element xF ∈ K0

FJ(M/F) with [F ] = p∗(xF ) (e. g. F asymptotically a
bundle over the leaf space as in Definition 5.5), then the index of the twisted operator DF is

ind(DF ) = xF · ind(D) ∈ K0
C(M/F).

Proof. ind(DF ) = [D] ◦ [F ] = [D] ◦ Jp∗K ◦ xF = JmKK ◦ (xF ⊗ ind(D)) = xF · ind(D).

Corollary 11.4 (cf. [Roe95, p. 204]). Assume that TF is even dimensional and spinc

and let /D be the corresponding Dirac operator. Then the map

p! ◦ p∗ : K∗
FJ(M/F) → K∗

C(M/F)
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is module multiplication with ind( /D) ∈ K0
C(M/F).

Proof. p! ◦ p∗(x) = J /DK ◦ Jp∗K ◦ x = JmKK ◦ (x⊗ ind( /D)) = x · ind( /D).

For the proof of Theorem 11.2 it would be beneficial if one had defined the stable Higson
corona in a more analytic way. Recall that Higson originally defined his corona ηX of a complete
Riemannian manifoldX as the maximal ideal space of the C∗-algebra generated by the bounded
smooth functions X → C whose gradient vanishes at infinity (cf. [Roe93, Section 5.1]). It is
unknown to the author under which conditions this definition is equivalent to Roe’s definition
(ibid.). In other words: given a complete Riemannian manifold and a bounded continuous
function of vanishing variation, can this function be approximated by smooth functions whose
gradients vanish at infinity? For the present situation, it is sufficient to have the following
partial result for the stable Higson corona of foliated cones:

Lemma 11.5. Every element of c(O(M,F)) has a representative g ∈ c(O(M,F)) such that
gt ∈ C(M)⊗ K is differentiable in the leafwise direction for all t and the leafwise derivatives
X.gt ∈ C(M)⊗ K vanish in the limit t→ ∞ for every leafwise vector field X ∈ C(M,TF).

Proof. Let {φi}i=1,...,k be an atlas of foliation charts φi : Ui
≈−→ RdimF × RcodimF and

{χi}i=1,...,k a subordinate smooth partition of unity. Choose a smooth function δ : RdimF →
[0,∞) supported in the compact unit ball B1(0) such that

∫
δ = 1.

Given any h ∈ c(O(M,F)), we define the functions

gi, hi : [0,∞)× RdimF × RcodimF → K

for i = 1, . . . , k by the formulas

hi(t, x, z) := h(t, φ−1
i (x, z)),

gi(t, x, z) :=

∫
RdimF

δ(x− y)hi(t, y, z)dy

and g : O(M,F) → K by

g(t, p) :=
k∑

i=1

χi(p)gi(t, φi(p)).

This function g is clearly continuous and we claim that it is a representative of h ∈ c(O(M,F))
with the desired properties.
To this end, let Ki := supp(χi) and note that there is R > 0 with the following property:

Whenever i = 1, . . . , k and (x, z), (y, z) ∈ φi(Ki) +B1(0), then the points φ−1
i (x, z), φ−1

i (y, z) ∈
M are joined by a leafwise path of length at most R. In particular, for all t ≥ 0 the distance
between the two points

(t, φ−1
i (x, z)), (t, φ−1

i (y, z)) ∈ O(M,F)

is at most R and therefore

‖hi(t, x, z)− hi(t, y, z)‖ ≤ VarR h(t, φ
−1
i (x, z)).
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This implies

‖gi(t, x, z)− hi(t, x, z)‖ =

∥∥∥∥∥

∫
B1(x)

δ(x− y)(hi(t, y, z)− hi(t, x, z))dy

∥∥∥∥∥

≤
∫
B1(x)

δ(x− y)‖hi(t, y, z)− hi(t, x, z)‖dy

≤ VarR h(t, φ
−1
i (x, z))

for all t ≥ 0 and (x, z) ∈ φi(Ki) and therefore ‖g(t, p)− h(t, p)‖ ≤ VarR h(t, p) for all (t, p) ∈
O(M,F). As VarR h vanishes at infinity, g must also have vanishing variation and g = h in
c(O(M,F)).
It remains to estimate the longitudinal derivatives: Let X ∈ C(M,TF) be a leafwise vector

field. Given p ∈M , we denote (xi, zi) := φi(p) and

Xi(xi, zi) := dφi(X(p)) ∈ RdimF ⊂ RdimF × RcodimF

for those i with p ∈ Ui. The derivative of gt along the leafwise vector field X is

X.gt(p) =

k∑

i=1

X.χi(p)gi(t, xi, zi) +

k∑

i=1

χi(p)

∫
B1(xi)

Xi.δ(xi − y)hi(t, y, zi)dy.

As for the first summand, note that

k∑

i=1

X.χi(p)hi(t, xi, zi) =
k∑

i=1

X.χi(p)h(t, p) = (X.1)h(t, p) = 0

and therefore
∥∥∥∥∥

k∑

i=1

X.χi(p)gi(t, xi, zi)

∥∥∥∥∥ =

∥∥∥∥∥

k∑

i=1

X.χi(p)(gi(t, xi, zi)− hi(t, xi, zi))

∥∥∥∥∥

≤
k∑

i=1

|X.χi(p)|VarR h(t, p)

which converges to 0 uniformly in p ∈M for t→ ∞.
For the second summand, we use that

∫
δ ≡ 1 and therefore∫

B1(xi)

Xi.δ(xi − y)dy = 0

to estimate∥∥∥∥∥

∫
B1(xi)

Xi.δ(xi − y)hi(t, y, zi)dy

∥∥∥∥∥ =

∥∥∥∥∥

∫
B1(xi)

Xi.δ(xi − y)(hi(t, y, zi)− hi(t, xi, zi))dy

∥∥∥∥∥

≤
∫
B1(xi)

|Xi.δ(xi − y)|VarR h(t, p)dy

which also converges to 0 uniformly in p ∈M for t→ ∞, because Xi.δ is bounded on the
compact set Ki +B1(0).

Proof of Theorem 11.2. The left hand side is represented by

S ⊗̂ c(O(M,F)) → A
2(K(E) ⊗̂ K)

f ⊗̂ g 7→ t 7→ s 7→ gt · (f(s−1DG) ⊗̂ 1
K̃
) .
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The right hand side, on the other hand, is represented by

S ⊗̂ c(O(M,F)) → A(K(E) ⊗̂ K)

f ⊗̂ g 7→ t 7→ gt · (f(DG) ⊗̂ 1
K̃
) .

To construct a 2-homotopy between them, let

α : S → A
2((B(E) ⊗̂ K̃)[0, 1])

f 7→ t 7→ s 7→ [r 7→ f((r + (1− r)s−1)DG) ⊗̂ 1
K̃
]

be the 2-homotopy obtained from the 1-homotopy in the proof of Lemma 10.5. Furthermore,
by interpreting gt ∈ C(M)⊗ K as an element of B(E) ⊗̂ K for all t, we obtain an inclusion

β : c(O(M,F)) → A
2((B(E) ⊗̂ K̃)[0, 1]), ḡ 7→ t 7→ s 7→ [r 7→ gt].

We have to show that the commutators [α(f), β(ḡ)] vanish for all f ∈ S and ḡ ∈ c(O(M,F)).
We may assume f(x) = (x± i)−1, as these functions generate S, and that g is as in Lemma
11.5. Then

‖[α(f), β(ḡ)]‖ = lim sup
t→∞

lim sup
s→∞

sup
r∈[0,1]

‖[f((r + (1− r)s−1)DG) ⊗̂ 1
K̃
, gt]‖

= lim sup
t→∞

sup
λ∈(0,1]

‖[f(λDG) ⊗̂ 1
K̃
, gt]‖

= lim sup
t→∞

sup
λ∈(0,1]

‖λ · ((λDG ± i)−1 ⊗̂ 1
K̃
) · [DG ⊗̂ 1

K̃
, gt] · ((λDG ± i)−1 ⊗̂ 1

K̃
)‖

≤ lim sup
t→∞

‖[DG ⊗̂ 1
K̃
, gt]‖.

If we write D =
∑

iAiXi with bundle endomorphisms Ai ∈ C(M,End(E)) and leafwise vector
fields Xi ∈ C(M,TF), then

[DG ⊗̂ 1
K̃
, gt] =

∑

i

(Ai ⊗̂ 1
K̃
)(1End(E) ⊗̂Xi.gt) ∈ C(M,End(E)) ⊗̂ K

and this vanishes for t→ ∞ by the choice of g.
Thus, α and β combine to a 2-homotopy

S ⊗̂ c(O(M,F)) → A
2(C[0, 1] ⊗̂B(E) ⊗̂ K̃)

f ⊗̂ g 7→ t 7→ s 7→ [r 7→ gt · (f((r + (1− r)s−1)DG) ⊗̂ 1
K̃
)]

whose image lies in the sub-C∗-algebra A
2(C[0, 1] ⊗̂ K(E) ⊗̂ K). Evaluating at 0, 1 yields

representatives of left and right hand side of the equation.
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1987.

Kas80a G. G. Kasparov. Hilbert C∗-modules: theorems of Stinespring and Voiculescu. J. Operator Theory,
4(1):133–150, 1980.

Kas80b G. G. Kasparov. The operator K-functor and extensions of C∗-algebras. Izv. Akad. Nauk SSSR Ser. Mat.,
44(3):571–636, 719, 1980.

Kor09 Yu. A. Kordyukov. Index theory and noncommutative geometry on manifolds with foliations. Uspekhi
Mat. Nauk, 64(2(386)):73–202, 2009.

Kuc97 Dan Kucerovsky. The KK-product of unbounded modules. K-Theory, 11(1):17–34, 1997.
Lan95 E. C. Lance. Hilbert C∗-modules, volume 210 of London Mathematical Society Lecture Note Series.

Cambridge University Press, Cambridge, 1995. A toolkit for operator algebraists.
MP84 J. A. Mingo and W. J. Phillips. Equivariant triviality theorems for Hilbert C∗-modules. Proc. Amer.

Math. Soc., 91(2):225–230, 1984.
Roe93 John Roe. Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Amer. Math.

Soc., 104(497):x+90, 1993.
Roe95 John Roe. From foliations to coarse geometry and back. In Analysis and geometry in foliated manifolds

(Santiago de Compostela, 1994), pages 195–205. World Sci. Publ., River Edge, NJ, 1995.
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et Marie Curie - Paris VI, 2001.
Win83 H. E. Winkelnkemper. The graph of a foliation. Ann. Global Anal. Geom., 1(3):51–75, 1983.
Wul14 Christopher Wulff. Coarse co-assembly as a ring homomorphism. To appear in Journal of Noncommutative

Geometry, arXiv:1412.1691, Preprint 2014.

Christopher Wulff
Instituto de Matemáticas (Unidad
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